82 research outputs found

    Simple Cell, Complex Envelope: Modeling the Heterogeneous Membranes of E.coli

    Get PDF

    Three dimensional modeling via photographs for documentation of a village bath

    Get PDF
    24th International CIPA Symposium; Strasbourg; France; 2 September 2013 through 6 September 2013The aim of this study is supporting the conceptual discussions of architectural restoration with three dimensional modeling of monuments based on photogrammetric survey. In this study, a 16th century village bath in UlamiÅŸ, Seferihisar, and Izmir is modeled for documentation. UlamiÅŸ is one of the historical villages within which Turkish population first settled in the region of Seferihisar - Urla. The methodology was tested on an antique monument; a bath with a cubical form. Within the limits of this study, only the exterior of the bath was modeled. The presentation scale for the bath was determined as 1 / 50, considering the necessities of designing structural interventions and architectural ones within the scope of a restoration project. The three dimensional model produced is a realistic document presenting the present situation of the ruin. Traditional plan, elevation and perspective drawings may be produced from the model, in addition to the realistic textured renderings and wireframe representations. The model developed in this study provides opportunity for presenting photorealistic details of historical morphologies in scale. Compared to conventional drawings, the renders based on the 3d models provide an opportunity for conceiving architectural details such as color, material and texture. From these documents, relatively more detailed restitution hypothesis can be developed and intervention decisions can be taken. Finally, the principles derived from the case study can be used for 3d documentation of historical structures with irregular surfaces

    Full-length OmpA: structure, function, and membrane interactions predicted by molecular dynamics simulations

    No full text
    OmpA is a multidomain protein found in the outer membranes of most Gram-negative bacteria. Despite a wealth of reported structural and biophysical studies, the structure-function relationships of this protein remain unclear. For example, it is still debated whether it functions as a pore, and the precise molecular role it plays in attachment to the peptidoglycan of the periplasm is unknown. The absence of a consensus view is partly due to the lack of a complete structure of the full-length protein. To address this issue, we performed molecular-dynamics simulations of the full-length model of the OmpA dimer proposed by Robinson and co-workers. The N-terminal domains were embedded in an asymmetric model of the outer membrane, with lipopolysaccharide molecules in the outer leaflet and phospholipids in the inner leaflet. Our results reveal a large dimerization interface within the membrane environment, ensuring that the dimer is stable over the course of the simulations. The linker is flexible, expanding and contracting to pull the globular C-terminal domain up toward the membrane or push it down toward the periplasm, suggesting a possible mechanism for providing mechanical stability to the cell. The external loops were more stabilized than was observed in previous studies due to the extensive dimerization interface and presence of lipopolysaccharide molecules in our outer-membrane model, which may have functional consequences in terms of OmpA adhesion to host cells. In addition, the pore-gating behavior of the protein was modulated compared with previous observations, suggesting a possible role for dimerization in channel regulation

    Dynamics of crowded vesicle: local and global responses to membrane composition

    No full text
    The bacterial cell envelope is composed of a mixture of different lipids and proteins, making it an inherently complex organelle. The interactions between integral membrane proteins and lipids are crucial for their respective spatial localization within bacterial cells. We have employed microsecond timescale coarse-grained molecular dynamics simulations of vesicles of varying sizes and with a range of protein and lipid compositions, and used novel approaches to measure both local and global system dynamics, the latter based on spherical harmonics analysis. Our results suggest that both hydrophobic mismatch, enhanced by embedded membrane proteins, and curvature based sorting, due to different modes of undulation, may drive assembly in vesicular systems. Interestingly, the modes of undulation of the vesicles were found to be altered by the specific protein and lipid composition of the vesicle. Strikingly, lipid dynamics were shown to be coupled to proteins up to 6 nm from their surface, a substantially larger distance than has previously been observed, resulting in multi-layered annular rings enriched with particular types of phospholipid. Such large protein-lipid complexes may provide a mechanism for long-range communication. Given the complexity of bacterial membranes, our results suggest that subtle changes in lipid composition may have major implications for lipid and protein sorting under a curvature-based membrane-sorting model

    Headgroup Structure and Cation Binding in Phosphatidylserine Lipid Bilayers

    Get PDF
    Phosphatidylserine (PS) is a negatively charged lipid type commonly found in eukaryotic membranes, where it interacts with proteins via nonspecific electrostatic interactions as well as via specific binding. Moreover, in the presence of calcium ions, PS lipids can induce membrane fusion and phase separation. Molecular details of these phenomena remain poorly understood, partly because accurate models to interpret the experimental data have not been available. Here we gather a set of previously published experimental NMR data of C-H bond order parameter magnitudes, vertical bar S-CH vertical bar, for pure PS and mixed PS:PC (phosphatidylcholine) lipid bilayers and augment this data set by measuring the signs of S-CH in the PS headgroup using S-DROSS solid-state NMR spectroscopy. The augmented data set is then used to assess the accuracy of the PS headgroup structures in, and the cation binding to, PS-containing membranes in the most commonly used classical molecular dynamics (MD) force fields including CHARMM36, Lipidl7, MacRog, Slipids, GROMOS-CKP, Berger, and variants. We show large discrepancies between different force fields and that none of them reproduces the NMR data within experimental accuracy. However, the best MD models can detect the most essential differences between PC and PS headgroup structures. The cation binding affinity is not captured correctly by any of the PS force fields-an observation that is in line with our previous results for PC lipids. Moreover, the simulated response of the PS headgroup to bound ions can differ from experiments even qualitatively. The collected experimental data set and simulation results will pave the way for development of lipid force fields that correctly describe the biologically relevant negatively charged membranes and their interactions with ions. This work is part of the NMRlipids open collaboration project (nmrlipids.blogspot.fi).Peer reviewe

    Gene fusions and gene duplications: relevance to genomic annotation and functional analysis

    Get PDF
    BACKGROUND: Escherichia coli a model organism provides information for annotation of other genomes. Our analysis of its genome has shown that proteins encoded by fused genes need special attention. Such composite (multimodular) proteins consist of two or more components (modules) encoding distinct functions. Multimodular proteins have been found to complicate both annotation and generation of sequence similar groups. Previous work overstated the number of multimodular proteins in E. coli. This work corrects the identification of modules by including sequence information from proteins in 50 sequenced microbial genomes. RESULTS: Multimodular E. coli K-12 proteins were identified from sequence similarities between their component modules and non-fused proteins in 50 genomes and from the literature. We found 109 multimodular proteins in E. coli containing either two or three modules. Most modules had standalone sequence relatives in other genomes. The separated modules together with all the single (un-fused) proteins constitute the sum of all unimodular proteins of E. coli. Pairwise sequence relationships among all E. coli unimodular proteins generated 490 sequence similar, paralogous groups. Groups ranged in size from 92 to 2 members and had varying degrees of relatedness among their members. Some E. coli enzyme groups were compared to homologs in other bacterial genomes. CONCLUSION: The deleterious effects of multimodular proteins on annotation and on the formation of groups of paralogs are emphasized. To improve annotation results, all multimodular proteins in an organism should be detected and when known each function should be connected with its location in the sequence of the protein. When transferring functions by sequence similarity, alignment locations must be noted, particularly when alignments cover only part of the sequences, in order to enable transfer of the correct function. Separating multimodular proteins into module units makes it possible to generate protein groups related by both sequence and function, avoiding mixing of unrelated sequences. Organisms differ in sizes of groups of sequence-related proteins. A sample comparison of orthologs to selected E. coli paralogous groups correlates with known physiological and taxonomic relationships between the organisms

    Anti-infectives in Drug Delivery-Overcoming the Gram-Negative Bacterial Cell Envelope.

    Get PDF
    Infectious diseases are becoming a major menace to the state of health worldwide, with difficulties in effective treatment especially of nosocomial infections caused by Gram-negative bacteria being increasingly reported. Inadequate permeation of anti-infectives into or across the Gram-negative bacterial cell envelope, due to its intrinsic barrier function as well as barrier enhancement mediated by resistance mechanisms, can be identified as one of the major reasons for insufficient therapeutic effects. Several in vitro, in silico, and in cellulo models are currently employed to increase the knowledge of anti-infective transport processes into or across the bacterial cell envelope; however, all such models exhibit drawbacks or have limitations with respect to the information they are able to provide. Thus, new approaches which allow for more comprehensive characterization of anti-infective permeation processes (and as such, would be usable as screening methods in early drug discovery and development) are desperately needed. Furthermore, delivery methods or technologies capable of enhancing anti-infective permeation into or across the bacterial cell envelope are required. In this respect, particle-based carrier systems have already been shown to provide the opportunity to overcome compound-related difficulties and allow for targeted delivery. In addition, formulations combining efflux pump inhibitors or antimicrobial peptides with anti-infectives show promise in the restoration of antibiotic activity in resistant bacterial strains. Despite considerable progress in this field however, the design of carriers to specifically enhance transport across the bacterial envelope or to target difficult-to-treat (e.g., intracellular) infections remains an urgently needed area of improvement. What follows is a summary and evaluation of the state of the art of both bacterial permeation models and advanced anti-infective formulation strategies, together with an outlook for future directions in these fields
    • …
    corecore