205 research outputs found

    Probability densities of a forced probe particle in glass: results from mode coupling theory and simulations of active microrheology

    Full text link
    We investigate the displacements of a probe particle inside a glass, when a strong external force is applied to the probe (active nonlinear microrheology). Calculations within mode coupling theory are presented for glasses of hard spheres and compared to Langevin and Brownian dynamics simulations. Under not too strong forces where the probe remains trapped, the probe density distribution becomes anisotropic. It is shifted towards the direction of the force, develops an enhanced tail in that direction (signalled by a positive skewness), and exhibits different variances along and perpendicular to the force direction. A simple model of an harmonically trapped probe rationalizes the low force limit, with strong strain softening setting in at forces of the order of a few thermal energies per particle radius

    Phenotypic Diversity of Cryptococcus neoformans var. neoformans Clinical Isolates from Localized and Disseminated Infections

    Get PDF
    Cryptococcus neoformans var. neoformans is the second most prevalent agent of cryptococcosis in central Europe. Infections mostly present with localized skin and disseminated infections. Previous studies did not find these presentations to be determined by the fungal genotype as detected by multilocus sequence typing (MLST). However, phenotypic fungal traits may impact clinical presentation. Here, we studied the growth and virulence factors of C. neoformans var. neoformans isolates from disseminated and localized infections and an environmental isolate. We used coincubation with Acanthamoeba castellanii and the Galleria mellonella infection model to identify phenotypic characteristics potentially associated with clinical presentation. Clinical isolates of C. neoformans var. neoformans present a substantial phenotypic variability. Median survival of G. mellonella varied between 6 and 14 days. C. neoformans var. neoformans isolates from disseminated infections showed stronger melanization and larger capsules. They demonstrated superior uptake into an amoeba and increased cytotoxicity for the amoeba. Differences of strains from localized and disseminated infections in coincubation with amoeba are in line with the importance of phagocytes in the pathogenesis of disseminated cryptococcosis. Phenotypic traits and non-vertebrate infection models may help understand the virulence potential of C. neoformans var. neoformans isolates.Peer Reviewe

    A modular interface of IL-4 allows for scalable affinity without affecting specificity for the IL-4 receptor

    Get PDF
    BACKGROUND: Interleukin 4 (IL-4) is a key regulator of the immune system and an important factor in the development of allergic hypersensitivity. Together with interleukin 13 (IL-13), IL-4 plays an important role in exacerbating allergic and asthmatic symptoms. For signal transduction, both cytokines can utilise the same receptor, consisting of the IL-4Rα and the IL-13Rα1 chain, offering an explanation for their overlapping biological functions. Since both cytokine ligands share only moderate similarity on the amino acid sequence level, molecular recognition of the ligands by both receptor subunits is of great interest. IL-4 and IL-13 are interesting targets for allergy and asthma therapies. Knowledge of the binding mechanism will be important for the generation of either IL-4 or IL-13 specific drugs. RESULTS: We present a structure/function analysis of the IL-4 ligand-receptor interaction. Structural determination of a number of IL-4 variants together with in vitro binding studies show that IL-4 and its high-affinity receptor subunit IL-4Rα interact via a modular protein-protein interface consisting of three independently-acting interaction clusters. For high-affinity binding of wild-type IL-4 to its receptor IL-4Rα, only two of these clusters (i.e. cluster 1 centered around Glu9 and cluster 2 around Arg88) contribute significantly to the free binding energy. Mutating residues Thr13 or Phe82 located in cluster 3 to aspartate results in super-agonistic IL-4 variants. All three clusters are fully engaged in these variants, generating a three-fold higher binding affinity for IL-4Rα. Mutagenesis studies reveal that IL-13 utilizes the same main binding determinants, i.e. Glu11 (cluster 1) and Arg64 (cluster 2), suggesting that IL-13 also uses this modular protein interface architecture. CONCLUSION: The modular architecture of the IL-4-IL-4Rα interface suggests a possible mechanism by which proteins might be able to generate binding affinity and specificity independently. So far, affinity and specificity are often considered to co-vary, i.e. high specificity requires high affinity and vice versa. Although the binding affinities of IL-4 and IL-13 to IL-4Rα differ by a factor of more than 1000, the specificity remains high because the receptor subunit IL-4Rα binds exclusively to IL-4 and IL-13. An interface formed by several interaction clusters/binding hot-spots allows for a broad range of affinities by selecting how many of these interaction clusters will contribute to the overall binding free energy. Understanding how proteins generate affinity and specificity is essential as more and more growth factor receptor families show promiscuous binding to their respective ligands. This limited specificity is, however, not accompanied by low binding affinities

    Basophil Activation Test for Investigation of IgE-Mediated Mechanisms in Drug Hypersensitivity

    Get PDF
    Hypersensitivity reactions against non-steroidal anti-inflammatory drugs (NSAIDs) like propyphenazone (PP) and diclofenac (DF) can manifest as Type I-like allergic reactions 1. In clinical practice, diagnosis of drug hypersensitivity is mainly performed by patient history, as skin testing is not reliable and oral provocation testing bears life-threatening risks for the patient 2. Hence, evidence for an underlying IgE-mediated pathomechanism is hard to obtain

    Chronic Immune Activation in HIV-1 Infection Contributes to Reduced Interferon Alpha Production via Enhanced CD40:CD40 Ligand Interaction

    Get PDF
    Although a signature of increased interferon (IFN-)alpha production is observed in HIV-1 infection, the response of circulating plasmacytoid dendritic cells (PDC) to Toll-like receptor ligand stimulation is substantially impaired. This functional PDC deficit, which we specifically observed in HIV-1 infected individuals with less than 500 CD4+ T cells/µl, is not well understood. We provide evidence that the peripheral IFN-alpha production in HIV-1 infection is actively suppressed by the enhanced interaction of CD40 ligand (CD40L), a member of the tumor necrosis factor family, and its receptor CD40, which are both upregulated upon immune activation. Plasma levels of soluble CD40L were significantly higher in untreated HIV-1 infected individuals (n = 52) than in subjects on long-term antiretroviral therapy (n = 62, p<0.03) and in uninfected control donors (n = 16, p<0.001). Concomitantly, cell-associated CD40L and the expression of the receptor CD40 on the PDC were significantly upregulated in HIV-1 infection (p<0.05). Soluble and cell-associated CD40L inhibited the PDC-derived IFN-alpha production by CpG oligodeoxynucleotides dose-dependently. This suppressive effect was observed at much lower, physiological CD40L concentrations in peripheral blood mononuclear cells (PBMC) of HIV-1 infected individuals compared to controls (p<0.05). The CpG-induced IFN-alpha production in PBMC of HIV-1 infected donors was directly correlated with PDC and CD4+ T cell counts, and inversely correlated with the viral loads (p<0.001). In HIV-1 infected donors with less than 500 CD4+ T cells/µl, the CpG-induced IFN-alpha production was significantly correlated with the percentage of CD40-expressing PDC and the level of CD40 expression on these cells (p<0.05), whereas CD40L plasma levels played a minor role. In addition, low-dose CD40L contributed to the enhanced production of interleukin 6 and 8 in PBMC of HIV-1 infected donors compared to controls. Our data support the conclusion that the chronic immune activation in HIV-1 infection impairs peripheral PDC innate immune responses at least in part via enhanced CD40:CD40L interactions

    Case report: Bullous pemphigoid in HIV-1-positive patients: interplay or coincidence? A case series and review of the literature

    Get PDF
    Bullous pemphigoid (BP) is an autoimmune inflammatory skin disease, mostly affecting the elderly population. Therefore, patients often have multiple comorbidities, but there is inconsistent data regarding the relationship between HIV-1 infection and BP, which has been rarely reported in combination. Herein, we describe three patients who presented with BP and concomitant HIV-1 infection that was well controlled with modern combined antiretroviral therapy. All patients received topical and oral corticosteroids. Depending on the individual severity, further add-on therapeutics, such as azathioprine, dapsone, doxycycline and the interleukin 4/13 antibody dupilumab, were added to the therapy regimen. All patients recovered from pruritic skin lesions and blistering. The cases are further discussed in the context of the current study landscape. In conclusion, HIV-1 infection shifts the cytokine profile from T-helper type 1 (TH1) towards T-helper type 2 (TH2), resulting in the excessive secretion of distinct cytokines, such as interleukin 4 (IL-4) and interleukin 10 (IL-10). With IL-4 being a main driver in the pathogenesis of BP, HIV-1-positive patients may benefit greatly from targeting IL-4 with monoclonal antibodies

    Life-Threatening Atypical Case of Acute Generalized Exanthematous Pustulosis

    Get PDF
    Antibiotics are known to cause severe cutaneous adverse reactions, such as the rare acute generalized exanthematous pustulosis (AGEP). Unlike Stevens-Johnson syndrome or toxic epidermal necrolysis, AGEP is rarely life-threatening. Systemic involvement is not typical, and if present usually coincides with a mild elevation of the hepatic enzymes and a decrease in renal function. Hence, AGEP is known to have a good prognosis and to be life-threatening only in elderly patients or patients with chronic diseases. Herein, we report a case of AGEP in a young healthy male leading to systemic inflammatory response syndrome and to treatment in an intensive care unit after being treated with 5 different antibiotics. Initial symptoms were not indicative for AGEP and the patient's course of disease led promptly to critical cardiorespiratory symptoms and systemic inflammatory response syndrome. We assume that the administration of the 5 different antibiotics resulted in type IV allergy as well as secondary infection with Enterococcus faecium and Staphylococcus aureus, while the underlying periodontitis also contributed to the severity of this case

    SARS-CoV-2-Seronegative Subjects Target CTL Epitopes in the SARS-CoV-2 Nucleoprotein Cross-Reactive to Common Cold Coronaviruses

    Get PDF
    The beta-coronavirus SARS-CoV-2 induces severe disease (COVID-19) mainly in elderly persons with risk factors, whereas the majority of patients experience a mild course of infection. As the circulating common cold coronaviruses OC43 and HKU1 share some homologous sequences with SARS-CoV-2, beta-coronavirus cross-reactive T-cell responses could influence the susceptibility to SARS-CoV-2 infection and the course of COVID-19. To investigate the role of beta-coronavirus cross-reactive T-cells, we analyzed the T-cell response against a 15 amino acid long peptide (SCoV-DP15: DLSPRWYFYYLGTGP) from the SARS-CoV-2 nucleoprotein sequence with a high homology to the corresponding sequence (QLLPRWYFYYLGTGP) in OC43 and HKU1. SCoV-DP15-specific T-cells were detected in 4 out of 23 (17.4%) SARS-CoV-2-seronegative healthy donors. As HIV-1 infection is a potential risk factor for COVID-19, we also studied a cohort of HIV-1-infected patients on antiretroviral therapy. 44 out of these 116 HIV-1-infected patients (37.9%) showed a specific recognition of the SCoV-DP15 peptide or of shorter peptides within SCoV-DP15 by CD4+ T-cells and/or by CD8+ T-cells. We could define several new cross-reactive HLA-I-restricted epitopes in the SARS-CoV-2 nucleoprotein such as SPRWYFYYL (HLA-B*07, HLA-B*35), DLSPRWYFYY (HLA-A*02), LSPRWYFYY (HLA-A*29), WYFYYLGTGP and WYFYYLGT. Epitope specific CD8+ T-cell lines recognized corresponding epitopes within OC43 and HKU1 to a similar degree or even at lower peptide concentrations suggesting that they were induced by infection with OC43 or HKU1. Our results confirm that SARS-CoV-2-seronegative subjects can target SARS-CoV-2 not only by beta-coronavirus cross-reactive CD4+ T-cells but also by cross-reactive CD8+ cytotoxic T-cells (CTL). The delineation of cross-reactive T-cell epitopes contributes to an efficient epitope-specific immunomonitoring of SARS-CoV-2-specific T-cells. Further prospective studies are needed to prove a protective role of cross-reactive T-cells and their restricting HLA alleles for control of SARS-CoV-2 infection. The frequent observation of SARS-CoV-2-reactive T-cells in HIV-1-infected subjects could be a reason that treated HIV-1 infection does not seem to be a strong risk factor for the development of severe COVID-19
    corecore