305 research outputs found

    Radiation Induces Metabolic Dysregulation in Pulmonary Fibroblasts

    Get PDF
    Rationale: Exposure of the lung to ionizing radiation, such as during radiotherapy, can result in pulmonary fibrosis (PF), which has few treatment options. PF is characterized by an accumulation of extracellular matrix proteins that form scar tissue, resulting in dyspnea, disruption of gas exchange, and even death. We and others have shown that metabolic reprogramming is a hallmark of idiopathic pulmonary fibrosis (IPF). IPF lung tissue, and lung fibroblasts treated with TGF-β, exhibit increased aerobic glycolysis with increased expression of lactate dehydrogenase A (LDHA) and excess production of lactate, leading to reduced extracellular pH that activates latent TGF-β. Here, we hypothesized that ionizing radiation would cause aerobic glycolytic metabolic dysregulation in primary human lung fibroblasts. Results: Primary non-fibrotic HLFs exposed to irradiation exhibited significant upregulation of Pyruvate Dehydrogenase Kinase (PDK1 (0.5 – 3-fold, p\u3c0.05) and LDHA (1.4-fold, p\u3c0.05). Cell viability was unaffected by increased radiation dose. Conclusions: Radiation increased fibroblast expression of genes involved in fibrotic phenotypes (αSMA) and aerobic glycolysis (PDK1 and LDHA), in a similar pattern to that seen in IPF fibroblasts. The metabolic changes are closely associated with creating a profibrotic extracellular environment in IPF by promoting an acidic environment. Our evidence suggests this phenomenon can be driven by radiation in lung fibroblasts and affirm that glycolytic reprogramming may also be a hallmark of radiation-induced fibrosis. Further understanding of the common mechanisms that create this metabolic shift could provide novel therapeutics for fibrosis treatment.https://scholarscompass.vcu.edu/gradposters/1158/thumbnail.jp

    Logics for Unranked Trees: An Overview

    Get PDF
    Labeled unranked trees are used as a model of XML documents, and logical languages for them have been studied actively over the past several years. Such logics have different purposes: some are better suited for extracting data, some for expressing navigational properties, and some make it easy to relate complex properties of trees to the existence of tree automata for those properties. Furthermore, logics differ significantly in their model-checking properties, their automata models, and their behavior on ordered and unordered trees. In this paper we present a survey of logics for unranked trees

    Electrophilic PPARγ Ligands Attenuate IL-1β and Silica-Induced Inflammatory Mediator Production in Human Lung Fibroblasts via a PPARγ-Independent Mechanism

    Get PDF
    Acute and chronic lung inflammation is associated with numerous important disease pathologies including asthma, chronic obstructive pulmonary disease and silicosis. Lung fibroblasts are a novel and important target of anti-inflammatory therapy, as they orchestrate, respond to, and amplify inflammatory cascades and are the key cell in the pathogenesis of lung fibrosis. Peroxisome proliferator-activated receptor gamma (PPARγ) ligands are small molecules that induce anti-inflammatory responses in a variety of tissues. Here, we report for the first time that PPARγ ligands have potent anti-inflammatory effects on human lung fibroblasts. 2-cyano-3, 12-dioxoolean-1, 9-dien-28-oic acid (CDDO) and 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) inhibit production of the inflammatory mediators interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), COX-2, and prostaglandin (PG)E2 in primary human lung fibroblasts stimulated with either IL-1β or silica. The anti-inflammatory properties of these molecules are not blocked by the PPARγ antagonist GW9662 and thus are largely PPARγ independent. However, they are dependent on the presence of an electrophilic carbon. CDDO and 15d-PGJ2, but not rosiglitazone, inhibited NF-κB activity. These results demonstrate that CDDO and 15d-PGJ2 are potent attenuators of proinflammatory responses in lung fibroblasts and suggest that these molecules should be explored as the basis for novel, targeted anti-inflammatory therapies in the lung and other organs

    Emerging PPAR γ

    Get PDF
    Peroxisome proliferator activated receptor (PPAR)-γ is a nuclear hormone receptor that is activated by multiple agonists including thiazolidinediones, prostaglandins, and synthetic oleanolic acids. Many PPARγ ligands are under investigation as potential therapies for human diseases. These ligands modulate multiple cellular pathways via both PPARγ-dependent and PPARγ-independent mechanisms. Here, we review the role of PPARγ and PPARγ ligands in lung disease, with emphasis on PPARγ-independent effects. PPARγ ligands show great promise in moderating lung inflammation, as antiproliferative agents in combination to enhance standard chemotherapy in lung cancer and as treatments for pulmonary fibrosis, a progressive fatal disease with no effective therapy. Some of these effects occur when PPARγ is pharmaceutically antagonized or genetically PPARγ and are thus independent of classical PPARγ-dependent transcriptional control. Many PPARγ ligands demonstrate direct binding to transcription factors and other proteins, altering their function and contributing to PPARγ-independent inhibition of disease phenotypes. These PPARγ-independent mechanisms are of significant interest because they suggest new therapeutic uses for currently approved drugs and because they can be used as probes to identify novel proteins and pathways involved in the pathogenesis or treatment of disease, which can then be targeted for further investigation and drug development

    A Novel Anti-Inflammatory and Pro-Resolving Role for Resolvin D1 in Acute Cigarette Smoke-Induced Lung Inflammation

    Get PDF
    Introduction: Cigarette smoke is a profound pro-inflammatory stimulus that contributes to acute lung injuries and to chronic lung disease including COPD (emphysema and chronic bronchitis). Until recently, it was assumed that resolution of inflammation was a passive process that occurred once the inflammatory stimulus was removed. It is now recognized that resolution of inflammation is a bioactive process, mediated by specialized lipid mediators, and that normal homeostasis is maintained by a balance between pro-inflammatory and pro-resolving pathways. These novel small lipid mediators, including the resolvins, protectins and maresins, are bioactive products mainly derived from dietary omega-3 and omega-6 polyunsaturated fatty acids (PUFA). We hypothesize that resolvin D1 (RvD1) has potent anti-inflammatory and pro-resolving effects in a model of cigarette smoke-induced lung inflammation. Methods: Primary human lung fibroblasts, small airway epithelial cells and blood monocytes were treated with IL-1β or cigarette smoke extract in combination with RvD1 in vitro, production of pro-inflammatory mediators was measured. Mice were exposed to dilute mainstream cigarette smoke and treated with RvD1 either concurrently with smoke or after smoking cessation. The effects on lung inflammation and lung macrophage populations were assessed. Results: RvD1 suppressed production of pro-inflammatory mediators by primary human cells in a dose-dependent manner. Treatment of mice with RvD1 concurrently with cigarette smoke exposure significantly reduced neutrophilic lung inflammation and production of pro-inflammatory cytokines, while upregulating the anti-inflammatory cytokine IL-10. RvD1 promoted differentiation of alternatively activated (M2) macrophages and neutrophil efferocytosis. RvD1 also accelerated the resolution of lung inflammation when given after the final smoke exposure. Conclusions: RvD1 has potent anti-inflammatory and pro-resolving effects in cells and mice exposed to cigarette smoke. Resolvins have strong potential as a novel therapeutic approach to resolve lung injury caused by smoke and pulmonary toxicants

    Association between exposure to environmental tobacco smoke and biomarkers of oxidative stress among patients hospitalised with acute myocardial infarction

    Get PDF
    Objective To determine whether exposure to environmental tobacco smoke was associated with oxidative stress among patients hospitalised for acute myocardial infarction.<p></p> Design An existing cohort study of 1,261 patients hospitalised for acute myocardial infarction.<p></p> Setting Nine acute hospitals in Scotland.<p></p> Participants Sixty never smokers who had been exposed to environmental tobacco smoke (admission serum cotinine ≥3.0 ng/mL) were compared with 60 never smokers who had not (admission serum cotinine ≤0.1 ng/mL).<p></p> Intervention None.<p></p> Main outcome measures Three biomarkers of oxidative stress (protein carbonyl, malondialdehyde (MDA) and oxidised low-density lipoprotein (ox-LDL)) were measured on admission blood samples and adjusted for potential confounders.<p></p> Results After adjusting for baseline differences in age, sex and socioeconomic status, exposure to environmental tobacco smoke was associated with serum concentrations of both protein carbonyl (beta coefficient 7.96, 95% CI 0.76, 15.17, p = 0.031) and MDA (beta coefficient 10.57, 95% CI 4.32, 16.81, p = 0.001) but not ox-LDL (beta coefficient 2.14, 95% CI −8.94, 13.21, p = 0.703).<p></p> Conclusions Exposure to environmental tobacco smoke was associated with increased oxidative stress. Further studies are requires to explore the role of oxidative stress in the association between environmental tobacco smoke and myocardial infarction.<p></p&gt

    FilmArray, an Automated Nested Multiplex PCR System for Multi-Pathogen Detection: Development and Application to Respiratory Tract Infection

    Get PDF
    The ideal clinical diagnostic system should deliver rapid, sensitive, specific and reproducible results while minimizing the requirements for specialized laboratory facilities and skilled technicians. We describe an integrated diagnostic platform, the “FilmArray”, which fully automates the detection and identification of multiple organisms from a single sample in about one hour. An unprocessed biologic/clinical sample is subjected to nucleic acid purification, reverse transcription, a high-order nested multiplex polymerase chain reaction and amplicon melt curve analysis. Biochemical reactions are enclosed in a disposable pouch, minimizing the PCR contamination risk. FilmArray has the potential to detect greater than 100 different nucleic acid targets at one time. These features make the system well-suited for molecular detection of infectious agents. Validation of the FilmArray technology was achieved through development of a panel of assays capable of identifying 21 common viral and bacterial respiratory pathogens. Initial testing of the system using both cultured organisms and clinical nasal aspirates obtained from children demonstrated an analytical and clinical sensitivity and specificity comparable to existing diagnostic platforms. We demonstrate that automated identification of pathogens from their corresponding target amplicon(s) can be accomplished by analysis of the DNA melting curve of the amplicon

    Explaining telecoms and electricity internationalization in the European Union: a political economy perspective

    Get PDF
    One consequence of the liberalization of certain services in the European Union was that a number of formerly inward-looking incumbents in telecommunications and electricity rapidly transformed themselves into some of the world’s leading Multinationals. However, the precise relationship between liberalization and incumbent internationalization is contested. This article tests three persuasive arguments derived from the political economy literature on this relationship. The first claims that those incumbents most exposed to domestic liberalization would internationalise most. The second asserts the opposite: incumbents operating where liberalization was restricted could exploit monopolistic rents to finance their aggressive internationalisation. The third argument claims that a diversity of paths will be adopted by countries and incumbents vis-à-vis liberalization and internationalization. Using correlation and cluster analysis of the sample of all major EU telecoms and electricity incumbent Multinationals evidence is found in favour of the third hypothesis. Internationalization as a response to liberalization took diverse forms in terms of timing and extent and this is best explained using a country, sector and firm logic

    Persistent elastic behavior above a megathrust rupture patch: Nias island, West Sumatra

    Get PDF
    We quantify fore-arc deformation using fossil reefs to test the assumption commonly made in seismic cycle models that anelastic deformation of the fore arc is negligible. Elevated coral microatolls, paleoreef flats, and chenier plains show that the Sumatran outer arc island of Nias has experienced a complex pattern of relatively slow long-term uplift and subsidence during the Holocene epoch. This same island rose up to 2.9 m during the Mw 8.7 Sunda megathrust rupture in 2005. The mismatch between the 2005 and Holocene uplift patterns, along with the overall low rates of Holocene deformation, reflects the dominance of elastic strain accumulation and release along this section of the Sunda outer arc high and the relatively subordinate role of upper plate deformation in accommodating long-term plate convergence. The fraction of 2005 uplift that will be retained permanently is generally <4% for sites that experienced more than 0.25 m of coseismic uplift. Average uplift rates since the mid-Holocene range from 1.5 to −0.2 mm/a and are highest on the eastern coast of Nias, where coseismic uplift was nearly zero in 2005. The pattern of long-term uplift and subsidence is consistent with slow deformation of Nias along closely spaced folds in the north and trenchward dipping back thrusts in the southeast. Low Holocene tectonic uplift rates provide for excellent geomorphic and stratigraphic preservation of the mid-Holocene relative sea level high, which was under way by ∼7.3 ka and persisted until ∼2 ka

    Aryl hydrocarbon receptor deficiency causes the development of chronic obstructive pulmonary disease through the integration of multiple pathogenic mechanisms

    Get PDF
    Emphysema, a component of chronic obstructive pulmonary disease (COPD), is characterized by irreversible alveolar destruction that results in a progressive decline in lung function. This alveolar destruction is caused by cigarette smoke, the most important risk factor for COPD. Only 15%-20% of smokers develop COPD, suggesting that unknown factors contribute to disease pathogenesis. We postulate that the aryl hydrocarbon receptor (AHR), a receptor/transcription factor highly expressed in the lungs, may be a new susceptibility factor whose expression protects against COPD. Here, we report that Ahr-deficient mice chronically exposed to cigarette smoke develop airspace enlargement concomitant with a decline in lung function. Chronic cigarette smoke exposure also increased cleaved caspase-3, lowered SOD2 expression, and altered MMP9 and TIMP-1 levels in Ahr-deficient mice. We also show that people with COPD have reduced expression of pulmonary and systemic AHR, with systemic AHR mRNA levels positively correlating with lung function. Systemic AHR was also lower in never-smokers with COPD. Thus, AHR expression protects against the development of COPD by controlling interrelated mechanisms involved in the pathogenesis of this disease. This study identifies the AHR as a new, central player in the homeostatic maintenance of lung health, providing a foundation for the AHR as a novel therapeutic target and/or predictive biomarker in chronic lung disease
    corecore