220 research outputs found

    Adaptive Control in Wireless Networks

    Get PDF

    Men, Women and Pension

    Get PDF

    CRiBAC: Community-centric role interaction based access control model

    Get PDF
    As one of the most efficient solutions to complex and large-scale problems, multi-agent cooperation has been in the limelight for the past few decades. Recently, many research projects have focused on context-aware cooperation to dynamically provide complex services. As cooperation in the multi-agent systems (MASs) becomes more common, guaranteeing the security of such cooperation takes on even greater importance. However, existing security models do not reflect the agents' unique features, including cooperation and context-awareness. In this paper, we propose a Community-based Role interaction-based Access Control model (CRiBAC) to allow secure cooperation in MASs. To do this, we refine and extend our preliminary RiBAC model, which was proposed earlier to support secure interactions among agents, by introducing a new concept of interaction permission, and then extend it to CRiBAC to support community-based cooperation among agents. We analyze potential problems related to interaction permissions and propose two approaches to address them. We also propose an administration model to facilitate administration of CRiBAC policies. Finally, we present the implementation of a prototype system based on a sample scenario to assess the proposed work and show its feasibility. © 2012 Elsevier Ltd. All rights reserved

    Grid resolution and turbulent inflow boundary condition recommendations for NPARC calculations

    Get PDF
    The effects of grid resolution and specification of turbulent inflow boundary conditions were examined using the NPARC code with the Baldwin-Lomax and Chien k-e turbulence models. Three benchmark turbulent test cases were calculated: two were wall bounded flows and the third was a compressible mixing layer. The wall bounded flows were essentially insensitive to axial grid density; however, the location of the first point off the wall had a substantial effect on flow solutions. It was determined that the first point off the wall must be in the laminar sublayer (y+ less than or equal to 5) for the entire boundary layer. For the compressible mixing layer cases, the axial grid density affected the capturing of oblique shock waves in the mixing region, but the overall mixing rate was not strongly dependent on grid resolution. In specifying the inflow turbulent boundary conditions, it was very important to match the boundary layer and momentum thicknesses of the two flows entering the mixing region; calculations obtained with smaller or no boundary layers resulted in substantially reduced mixing. The solutions were relatively insensitive to freestream turbulence level

    The geographical dimension of income and consumption inequality

    Get PDF
    This paper aims at examining interpersonal income and consumption inequality within the Attica Metropolitan Region, which includes Athens, the largest metropolis of Greece. It also aims to make comparisons between Attica and the rest of the country. The analysis is based on income and consumption microdata from Greek Household Budget Surveys (HBS) over the period 2008-2019, encapsulating the period from the commencement of the economic crisis until the year before the outset of the COVID-19 pandemic. Results indicate that income inequalities are systematically higher than consumption inequalities. From a spatial comparative perspective, the results show that the Attica Metropolitan Region exhibits a higher degree of income and consumption inequality relative to the rest of the country. Furthermore, the economic crisis increased income inequality in Athens and in the rest of the country, while consumption expenditure inequality increased in the Athens metropolitan area only. Finally, the distance between socio-economic groups, which stands as a measure of the degree of social polarization, increased during the economic crisis. However, this does not hold true for consumption inequality. Overall, the analysis demonstrates the sensitivity of inequality outcomes to the selection of the welfare indicator (income or consumption), as well as a number of noticeable differences in inequality outcomes between the Metropolitan region of Attica and the rest of the country. The paper unveils facets of inequality which necessitate the implementation of more people and place-targeted policies aimed at more inclusive and balanced welfare conditions in metropolitan regions and across the country

    Differential effects of Epigallocatechin-3-gallate containing supplements on correcting skeletal defects in a Down syndrome mouse model

    Get PDF
    SCOPE: Down syndrome (DS), caused by trisomy of human chromosome 21 (Hsa21), is characterized by a spectrum of phenotypes including skeletal abnormalities. The Ts65Dn DS mouse model exhibits similar skeletal phenotypes as humans with DS. DYRK1A, a kinase encoded on Hsa21, has been linked to deficiencies in bone homeostasis in DS mice and individuals with DS. Treatment with Epigallocatechin-3-gallate (EGCG), a known inhibitor of Dyrk1a, improves some skeletal abnormalities associated with DS in mice. EGCG supplements are widely available but the effectiveness of different EGCG-containing supplements has not been well studied. METHODS AND RESULTS: Six commercially available supplements containing EGCG were analyzed, and two of these supplements were compared with pure EGCG for their impact on skeletal deficits in a DS mouse model. The results demonstrate differential effects of commercial supplements on correcting skeletal abnormalities in Ts65Dn mice. Different EGCG-containing supplements display differences in degradation, polyphenol content, and effects on trisomic bone. CONCLUSION: This work suggests that the dose of EGCG and composition of EGCG-containing supplements may be important in correcting skeletal deficits associated with DS. Careful analyses of these parameters may lead to a better understanding of how to improve skeletal and other deficits that impair individuals with DS

    Development of selective inhibitors for human aldehyde dehydrogenase 3A1 (ALDH3A1) for the enhancement of cyclophosphamide cytotoxicity

    Get PDF
    Aldehyde dehydrogenase 3A1 (ALDH3A1) plays an important role in many cellular oxidative processes, including cancer chemoresistance, by metabolizing activated forms of oxazaphosphorine drugs such as cyclophosphamide (CP) and its analogues, such as mafosfamide (MF), ifosfamide (IFM), and 4-hydroperoxycyclophosphamide (4-HPCP). Compounds that can selectively target ALDH3A1 could permit delineation of its roles in these processes and could restore chemosensitivity in cancer cells that express this isoenzyme. Here we report the detailed kinetic and structural characterization of an ALDH3A1-selective inhibitor, CB29, previously identified in a high-throughput screen. Kinetic and crystallographic studies demonstrate that CB29 binds within the aldehyde substrate-binding site of ALDH3A1. Cellular proliferation of ALDH3A1-expressing lung adenocarcinoma (A549) and glioblastoma (SF767) cell lines, as well as ALDH3A1 non-expressing lung fibroblast (CCD-13Lu) cells, is unaffected by treatment with CB29 and its analogues alone. However, sensitivity toward the anti-proliferative effects of mafosfamide is enhanced by treatment with CB29 and its analogue in the tumor cells. In contrast, the sensitivity of CCD-13Lu cells toward mafosfamide was unaffected by the addition of these same compounds. CB29 is chemically distinct from the previously reported small-molecule inhibitors of ALDH isoenzymes and does not inhibit ALDH1A1, ALDH1A2, ALDH1A3, ALDH1B1, or ALDH2 isoenzymes at concentrations up to 250 μM. Thus, CB29 is a novel small molecule inhibitor of ALDH3A1, which might be useful as a chemical tool to delineate the role of ALDH3A1 in numerous metabolic pathways, including sensitizing ALDH3A1-positive cancer cells to oxazaphosphorines

    Acceleration of relativistic beams using laser-generated terahertz pulses

    Get PDF
    Dielectric structures driven by laser-generated terahertz (THz) pulses may hold the key to overcoming the technological limitations of conventional particle accelerators and with recent experimental demonstrations of acceleration, compression and streaking of low-energy (sub-100 keV) electron beams, operation at relativistic beam energies is now essential to realize the full potential of THz-driven structures. We present the first THz-driven linear acceleration of relativistic 35 MeV electron bunches, exploiting the collinear excitation of a dielectric-lined waveguide driven by the longitudinal electric field component of polarization-tailored, narrowband THz pulses. Our results pave the way to unprecedented control over relativistic electron beams, providing bunch compression for ultrafast electron diffraction, energy manipulation for bunch diagnostics, and ultimately delivering high-field gradients for compact THz-driven particle acceleration.Comment: 8 pages, 4 figure

    A Comparison of CVR Magnitude and Delay Assessed at 1.5 and 3T in Patients With Cerebral Small Vessel Disease

    Get PDF
    BACKGROUND: Cerebrovascular reactivity (CVR) measures blood flow change in response to a vasoactive stimulus. Impairment is associated with several neurological conditions and can be measured using blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI). Field strength affects the BOLD signal, but the effect on CVR is unquantified in patient populations. METHODS: We recruited patients with minor ischemic stroke and assessed CVR magnitude and delay time at 3 and 1.5 Tesla using BOLD MRI during a hypercapnic challenge. We assessed subcortical gray (GM) and white matter (WM) differences using Wilcoxon signed rank tests and scatterplots. Additionally, we explored associations with demographic factors, WM hyperintensity burden, and small vessel disease score. RESULTS: Eighteen of twenty patients provided usable data. At 3T vs. 1.5T: mean CVR magnitude showed less variance (WM 3T: 0.062 ± 0.018%/mmHg, range 0.035, 0.093; 1.5T: 0.057 ± 0.024%/mmHg, range 0.016, 0.094) but was not systematically higher (Wilcoxon signal rank tests, WM: r = −0.33, confidence interval (CI): −0.013, 0.003, p = 0.167); delay showed similar variance (WM 3T: 40 ± 12 s, range: 12, 56; 1.5T: 31 ± 13 s, range 6, 50) and was shorter in GM (r = 0.33, CI: −2, 9, p = 0.164) and longer in WM (r = −0.59, CI: −16, −2, p = 0.010). Patients with higher disease severity tended to have lower CVR at 1.5 and 3T. CONCLUSION: Mean CVR magnitude at 3T was similar to 1.5T but showed less variance. GM/WM delay differences may be affected by low signal-to-noise ratio among other factors. Although 3T may reduce variance in CVR magnitude, CVR is readily assessable at 1.5T and reveals comparable associations and trends with disease severity
    corecore