8,770 research outputs found

    Uniformity Versus Flexibility: A Review of the Rhetoric

    Get PDF

    Wind Tunnel Investigation of Ground Wind Loads for Ares Launch Vehicle

    Get PDF
    A three year program was conducted at the NASA Langley Research Center (LaRC) Aeroelasticity Branch (AB) and Transonic Dynamics Tunnel (TDT) with the primary objective to acquire scaled steady and dynamic ground-wind loads (GWL) wind-tunnel data for rollout, on-pad stay, and on-pad launch configurations for the Ares I-X Flight Test Vehicle (FTV). The experimental effort was conducted to obtain an understanding of the coupling of aerodynamic and structural characteristics that can result in large sustained wind-induced oscillations (WIO) on such a tall and slender launch vehicle and to generate a unique database for development and evaluation of analytical methods for predicting steady and dynamic GWL, especially those caused by vortex shedding, and resulting in significant WIO. This paper summarizes the wind-tunnel test program that employed two dynamically-aeroelastically scaled GWL models based on the Ares I-X Flight Test Vehicle. The first model tested, the GWL Checkout Model (CM), was a relatively simple model with a secondary objective of restoration and development of processes and methods for design, fabrication, testing, and data analysis of a representative ground wind loads model. In addition, parametric variations in surface roughness, Reynolds number, and protuberances (on/off) were investigated to determine effects on GWL characteristics. The second windtunnel model, the Ares I-X GWL Model, was significantly more complex and representative of the Ares I-X FTV and included the addition of simplified rigid geometrically-scaled models of the Kennedy Space Center (KSC) Mobile Launch Platform (MLP) and Launch Complex 39B primary structures. Steady and dynamic base bending moment as well as model response and steady and unsteady pressure data was acquired during the testing of both models. During wind-tunnel testing of each model, flow conditions (speed and azimuth) where significant WIO occurred, were identified and thoroughly investigated. Scaled data from the Ares I-X GWL model test was used in the determination of worst-case loads for the analysis of Ares I-X FTV design wind conditions. Finally, this paper includes a brief discussion of the limited full-scale GWL data acquired during the rollout and on-pad stay of the Ares I-X FTV that was launched from KSC on October 28, 2009

    DESY NanoLab

    Get PDF
    The DESY NanoLab is a facility providing access to nano-characterization, nano-structuring and nano-synthesis techniques which are complementary to the advanced X-ray techniques available at DESY’s light sources. It comprises state-of-the art scanning probe microscopy and focused ion beam manufacturing, as well as surface sensitive spectroscopy techniques for chemical analysis. Specialized laboratory x-ray diffraction setups are available for a successful sample pre-characterization before the precious synchrotron beamtimes. Future upgrades will include as well characterization of magnetic properties

    Gas-induced segregation in Pt-Rh alloy nanoparticles observed by in-situ Bragg coherent diffraction imaging

    Full text link
    Bimetallic catalysts can undergo segregation or redistribution of the metals driven by oxidizing and reducing environments. Bragg coherent diffraction imaging (BCDI) was used to relate displacement fields to compositional distributions in crystalline Pt-Rh alloy nanoparticles. 3D images of internal composition showed that the radial distribution of compositions reverses partially between the surface shell and the core when gas flow changes between O2 and H2. Our observation suggests that the elemental segregation of nanoparticle catalysts should be highly active during heterogeneous catalysis and can be a controlling factor in synthesis of electrocatalysts. In addition, our study exemplifies applications of BCDI for in situ 3D imaging of internal equilibrium compositions in other bimetallic alloy nanoparticles

    Yield Curve Shapes and the Asymptotic Short Rate Distribution in Affine One-Factor Models

    Full text link
    We consider a model for interest rates, where the short rate is given by a time-homogenous, one-dimensional affine process in the sense of Duffie, Filipovic and Schachermayer. We show that in such a model yield curves can only be normal, inverse or humped (i.e. endowed with a single local maximum). Each case can be characterized by simple conditions on the present short rate. We give conditions under which the short rate process will converge to a limit distribution and describe the limit distribution in terms of its cumulant generating function. We apply our results to the Vasicek model, the CIR model, a CIR model with added jumps and a model of Ornstein-Uhlenbeck type

    Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up

    Get PDF
    We investigate a particle system which is a discrete and deterministic approximation of the one-dimensional Keller-Segel equation with a logarithmic potential. The particle system is derived from the gradient flow of the homogeneous free energy written in Lagrangian coordinates. We focus on the description of the blow-up of the particle system, namely: the number of particles involved in the first aggregate, and the limiting profile of the rescaled system. We exhibit basins of stability for which the number of particles is critical, and we prove a weak rigidity result concerning the rescaled dynamics. This work is complemented with a detailed analysis of the case where only three particles interact
    corecore