142 research outputs found

    Antibiotics Uptake from Soil and Translocation in the Plants – Meta-analysis

    Get PDF
    Antibiotics reach agricultural soils via fertilization with manure and biosolids as well as irrigation withwastewater and have the potential to be taken up by growing crops. The fate of antibiotics in terms of uptakefrom soil to plants, as well as translocation from root to leaves, is determined by a combination of antibiotic’sphysio-chemical (e.g. speciation, lipophilicity), soil (e.g. organic carbon content, pH) and plant (e.g.transpiration rates) characteristics. In this meta-analysis, a literature search was executed to obtain an overview of antibiotic uptake to plants, with an aim to identify uptake and translocation patterns of different antibiotic classes. Overall, we found that higher uptake of tetracyclines to plant leaves was observed compared to sulfonamides. Differences were also observed in translocation within the plants, where tetracyclines were found in roots and leaves with close to equal concentrations, while the sulfonamides represented a tendency to accumulate to the root fraction. The antibiotic’s characteristics have a high influence on their fate, for example, the high water-solubility and uncharged speciation in typical agricultural soil pH ranges likely induces tetracycline uptake from soil and translocation in plant. Despite the advances in knowledge over the past decade, our meta-analysis indicated that the available research is focused on a limited number of analytes and antibiotic classes. Furthermore, fastgrowing plant species (e.g. spinach, lettuce, and radish) are overly represented in studies compared to crop species with higher significance for human food sources (e.g. corn, wheat, and potato), requiring more attention in future research

    Biochars from chlorine-rich feedstock are low in polychlorinated dioxins, furans and biphenyls

    Get PDF
    Chlorinated aromatic hydrocarbons like polychlorinated dibenzo-p-dioxins and -furans (PCDD/F) and polychlorinated biphenyls (PCB) are omnipresent in the environment due to historic production, use, and (unintended) release. Nowadays, their emission and maximum concentration in environmental compartments is strictly regulated. During biochar production, PCDD/F and PCB may be formed and retained on the solid pyrolysis product. Industrial biochars certified, e.g., under the European Biochar Certificate (EBC), exhibit concentrations that were always well below threshold values for soil application and even animal feed. However, this has not been sufficiently tested for chlorine (Cl) rich organic material such as marine biomass or polyvinyl chloride (PVC) contaminated feedstock. Here, we analyzed PCDD/F and PCB contamination in biochars produced at different temperatures from different biomasses with comparatively high Cl contents in the range from 0.2 % to 3.8 % (w/w, seagrass, two types of saltwater macroalgae, tobacco stalks, and PVC contaminated wood). All of the biochars produced showed PCDD/F and PCB contents well below the applicable threshold values given by the EBC (< 20 ng TEQ kg−1 for PCDD/F and < 2×105 ng kg−1 for PCB). The EBC thresholds were undershot by a minimum of factor 1.5 for PCDD/F (mostly factor 20) and by a minimum of factor 90 for PCB. Between 1 and 27 ppb of feedstock Cl were transformed to Cl bound in PCDD/F and PCB in the biochars. No consistent correlation between biomass Cl contents and contents of PCDD/F and PCB were found but higher Cl contents in the feedstock led to a more diverse PCDD/F congener pattern in the biochars. Pyrolysis of PVC-amended wood resulted in consistently higher contamination of PCDD/F and PCB in the biochars compared to pyrolysis of the other biomasses, potentially due to differences in Cl speciation in the feedstocks i.e., Cl in PVC is already covalently bound to an organic carbon backbone. A high contamination in PCDD/F and PCB in biochar was intentionally triggered by separation of pyrogas and biochar in the reactor at < 300 °C to promote condensation of contaminants on the solid product. Between 20 % and 80 % of feedstock Cl was released via the pyrogas, i.e., neutralization of HCl in burnt pyrogas might be necessary when pyrolyzing Cl-rich feedstock in industrial biochar production. Our results indicate that biochars produced from Cl-rich feedstocks with proper biochar production process control are conform with European certification guidelines for PCDD/F and PCB contamination. The results open the opportunity to exploit and valorize so far non-used marine or otherwise Cl enriched biomasses for the production of biochar and carbon sinks

    Sediments: sink, archive, and source of contaminants

    Get PDF
    Se ha publicado una corrección de este artículo el 03 February 2023 ; DOI: 10.1007/s11356-023-25555-y Publicado en: Environmental Science and Pollution Research, Vol. 30, nº 12, March 2023, pp. 35514Sediments are sources and sinks of contaminants and play an important role in mediating pollutants across environmental compartments of terrestrial and aquatic ecosystems. In surface waters (lakes, slowly flowing or dammed rivers, estuaries, oceans), organic and inorganic contaminants are either dissolved or sorbed to suspended matter and sediment particles according to their chemical properties. In the case of strong sorption, settling of suspended particles and sediment formation scavenge contaminants out of the water phase, resulting in the accumulation of contaminants in the beds of rivers and lakes.5 página

    How to Determine the Environmental Exposure of PAHs Originating from Biochar

    Get PDF
    Biochars are obtained by pyrolyzing biomass materials and are increasingly used within the agricultural sector. Owing to the production process, biochars can contain polycyclic aromatic hydrocarbons (PAHs) in the high mg/kg range, which makes the determination of the environmental exposure of PAHs originating from biochars relevant. However, PAH sorption to biochar is characterized by very high (10<sup>4</sup>–10<sup>6</sup> L/kg) or extreme distribution coefficients (<i>K</i><sub>D</sub>) (>10<sup>6</sup> L/kg), which makes the determination of exposure scientifically and technically challenging. Cyclodextrin extractions, sorptive bioaccessibility extractions, Tenax extractions, contaminant traps, and equilibrium sampling were assessed and selected methods used for the determination of bioavailability parameters for PAHs in two model biochars. Results showed that: (1) the <i>K</i><sub>D</sub> values of typically 10<sup>6</sup>–10<sup>9</sup> L/kg made the biochars often act as sinks, rather than sources, of PAHs. (2) Equilibrium sampling yielded freely dissolved concentrations (pg–ng/L range) that were below or near environmental background levels. (3) None of the methods were found to be suitable for the direct measurement of the readily desorbing fractions of PAHs (i.e., bioacessibility) in the two biochars. (4) The contaminant-trap method yielded desorption-resistant PAH fractions of typically 90–100%, implying bioaccessibility in the high μg/kg to low mg/kg range

    Spectral Signatures of Submicron Scale Light-Absorbing Impurities in Snow and Ice Using Hyperspectral Microscopy

    Get PDF
    Light-absorbing impurities (LAI) can darken snow and ice surfaces, reduce snow/ice albedo and accelerate melt. Efforts to allocate the relative contribution of different LAI to snow/ice albedo reductions have been limited by uncertainties in the optical properties of LAI. We developed a new method to measure LAI spectral reflectance at the submicron scale by modifying a Hyperspectral Imaging Microscope Spectrometer (HIMS). We present the instrument’s internal calibration, and the overall small influence of a particle’s orientation on its measured reflectance spectrum. We validated this new method through the comparison with a field spectroradiometer by measuring different standard materials. Measurements with HIMS at the submicron scale and the bulk measurements of the same standard materials with the field pectroradiometer are in good agreement with an average deviation between the spectra of 3.2% for the 400–1000 nm wavelength range. The new method was used (1) to identify BC (black carbon), mineral dust including hematite and the humic substances present in an environmental sample from Plaine Morte glacier and (2) to collect the individual reflectance spectra of each of these types of impurity. The results indicate that this method is applicable to heterogeneous samples such as the LAI found in snow and ice

    Aquatic occurrence of phytotoxins in small streams triggered by biogeography, vegetation growth stage, and precipitation

    Get PDF
    Toxic plant secondary metabolites (PSMs), so-called phytotoxins, occur widely in plant species. Many of these phytotoxins have similar mobility, persistence, and toxicity properties in the environment as anthropogenic micropollutants, which increasingly contaminate surface waters. Although recent case studies have shown the aquatic relevance of phytotoxins, the overall exposure remains unknown. Therefore, we performed a detailed occurrence analysis covering 134 phytotoxins from 27 PSM classes. Water samples from seven small Swiss streams with catchment areas from 1.7 to 23 km(2) and varying land uses were gathered over several months to investigate seasonal impacts. They were complemented with samples from different biogeographical regions to cover variations in vegetation. A broad SPE-LC-HRMS/MS method was applied with limits of detection below 5 ng/L for over 80% of the 134 included phytotoxins. In total, we confirmed 39 phytotoxins belonging to 13 PSM classes, which corresponds to almost 30% of all included phytotoxins. Several alkaloids were regularly detected in the low ng/L-range, with average detection frequencies of 21%. This is consistent with the previously estimated persistence and mobility properties that indicated a high contamination potential. Coumarins were previously predicted to be unstable, however, detection frequencies were around 89%, and maximal concentrations up to 90 ng/L were measured for fraxetin produced by various trees. Overall, rainy weather conditions at full vegetation led to the highest total phytotoxin concentrations, which might potentially be most critical for aquatic organisms

    Concerted Evaluation of Pesticides in Soils of Extensive Grassland Sites and Organic and Conventional Vegetable Fields Facilitates the Identification of Major Input Processes

    Full text link
    The intensive use of pesticides and their subsequent distribution to the environment and non-target organisms is of increasing concern. So far, little is known about the occurrence of pesticides in soils of untreated areas─such as ecological refuges─as well as the processes contributing to this unwanted pesticide contamination. In this study, we analyzed the presence and abundance of 46 different pesticides in soils from extensively managed grassland sites, as well as organically and conventionally managed vegetable fields (60 fields in total). Pesticides were found in all soils, including the extensive grassland sites, demonstrating a widespread background contamination of soils with pesticides. The results suggest that after conversion from conventional to organic farming, the organic fields reach pesticide levels as low as those of grassland sites not until 20 years later. Furthermore, the different pesticide composition patterns in grassland sites and organically managed fields facilitated differentiation between long-term persistence of residues and diffuse contamination processes, that is, short-scale redistribution (spray drift) and long-scale dispersion (atmospheric deposition), to offsite contamination

    Environmental Exposure to Estrogenic and other Myco- and Phytotoxins

    Get PDF
    Zearalenone (ZON) is known as a very potent, naturally occurring estrogenic mycotoxin. It is one of the most prevalent mycotoxin produced as a secondary metabolite by Fusarium species growing on cereals such as wheat and corn. It has been studied extensively in food and feed products for decades but only rarely and somewhat by chance in the environment. We therefore elucidated its agro-environmental fate and behavior by conducting a series of field studies and monitoring campaigns. Specifically, ZON was investigated in plants, soils and drainage waters from wheat and corn fields artificially infected with Fusarium graminearum. In addition, manure, sewage sludge and surface waters were analyzed for ZON. Three main input pathways of ZON onto soil could be identified: i) wash-off from Fusarium-infected plants (in the order of 100 mg/ha), ii) plant debris remaining on the soil after harvest (up to few g/ha), and iii) manure application (in the order of 100 mg/ha). Our results show that these input sources altogether caused the presence of several g/ha of ZON in topsoil. Compared to this, ZON emission by drainage water from Fusarium-infected fields was generally low, with maximum concentrations of 35 ng/l and total amounts of a few mg/ha. Due to dilution, ZON concentrations dropped below environmental relevance in larger surface water bodies. However in small catchments dominated by runoff from agricultural land, ZON might substantially contribute to the estrogenicity of such waters. Apart from ZON, other natural toxins monitored in this study, such as the mycotoxin deoxynivalenol or the estrogenic phytoestrogen formononetin, emitted to and occurred in surface waters at considerably higher amounts. To date their ecotoxicological effects are largely unknown
    • …
    corecore