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Equilibrium HS-SPME non-target GC/MS assessment of
chemical potential of semivolatile HOCs across treatment
processes revealed an increase from inlet to digested sludge,
and effectiveness of co-composting as an end treatment for
reduction of the exposure level of semivolatile HOCs.
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Thermodynamic assessment of (semi-)volatile
hydrophobic organic chemicals in WWTP sludge –
combining solid phase microextraction with
non-target GC/MS†

Karina Knudsmark Sjøholm, *ab Matias Flyckt-Nielsen,a Thomas D. Buchelic

and Philipp Mayera

Applying WWTP sludge on arable soil has clear benefits from a resource recycling point of view but can

potentially also lead to contamination of soil, agricultural products and the environment. The sludge

contains a complex mixture of particularly hydrophobic organic chemicals (HOCs) that sorb to the organic

matter. Equilibrium sampling was recently applied to the measurement of chemical activities of polycyclic

aromatic hydrocarbons (PAHs) in secondary and digested sludge, and clear activity increases due to the

anaerobic digestion treatment were observed. In the present study we extend this work to a large number

of (semi-)volatile HOCs by combining automated headspace solid phase microextraction with non-

targeted gas chromatography mass spectrometry. Chemical activity ratios were determined between

sludge from the different stages of a WWTP and after co-composting with garden waste and sorbent

amendment with activated carbon (AC) and biochar (BC). Generally, chemical activities increased from

primary, to secondary, to digested sludge and the level in the dewatered sludge was not significantly

different from the level in the digested sludge. The cyclic siloxane D5 behaved differently as the level was

similar until the dewatering step, where it increased 4-fold. The results confirmed the earlier observation

that anaerobic digestion increased chemical activity, now for a broader range of chemicals, and showed

that co-composting was effective in reducing chemical activities of most of the tested (semi-)volatile

organic chemicals. Of the studied compounds, activities of decamethylcyclopentasiloxane (D5) and a musk

fragrance were reduced the least by co-composting.
30

35
Environmental signicance statement

WWTP sludge is recycled as soil fertilizer, but it contains a mixture of (semi-)volatile hydrophobic organic contaminants (HOCs) that are potentially problematic
for the environment. Differences and changes in chemical potential were measured using fully automated equilibrium headspace solid phase microextraction
non-target GC/MS. The methodology was applied to sludge from all stages of a WWTP, including two different end treatments. Chemical activity ratios revealed
increases in chemical potential from inlet to digested sludge, for the HOC mixture as a whole and for several individual compounds. Finally, aerobic co-
composting was shown to markedly reduce the chemical potential of most measured HOCs and can thus be used as an additional end treatment for minimizing
environmental risks of HOCs in sludge.
40
1. Introduction

The fate of the thousands of organic chemicals used in house-
holds and industries that daily end up in municipal wastewater
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treatment plants (WWTPs) is mostly unknown.1 While the
effluents of WWTPs are continuously investigated and known to
be a source of organic micropollutants detectable in the aquatic
environment,2 the solid end-product of the treatment process,
the sewage sludge or biosolid, is less well understood as
a source of contaminants.3,4 In addition the contaminants
associated with the sludge will have different environmental
pathways as they are introduced to soil as opposed to surface
water exposed to micropollutants emitted via the WWTP
effluent. Due to a desire for a circular economy in the society
and the high value of WWTP sludge as nitrogen and phosphate
fertilizer, the preferred recycling option of sludge produced in
WWTPs in many European countries is application on arable
Environ. Sci.: Processes Impacts, 2018, xx, 1–8 | 1
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soils.5 However, the sludge can accumulate chemicals and
transfer them when applied to the environment. Especially the
hydrophobic organic chemicals (HOCs) that preferentially sorb
to the organic matter in the sludge are of concern, as their
availability for both aerobic and anaerobic transformation
processes is limited when sequestered into the microstructures
in the sludge.6,7 There is a need for a better understanding of the
behaviour and fate of HOCs during sewage treatment
processes.8 This will also aid in risk assessment of application
of digested sludge on arable soils.

Digested sludge is in many cases used directly as soil fertil-
izer, whereas different options exist when the regulatory
thresholds of heavy metals, and in some countries a few organic
substances, for land application are not met. In contrast to this,
some countries, e.g. Switzerland, have completely forbidden the
use of WWTP sludge as soil fertilizer following the precau-
tionary principle. The non-recycling options are incineration
which is expensive and landll which still has potential for
environmental contamination if leaching occurs. Co-compost-
ing with other biogenic waste is one option to obtain a product
that is more suitable for recycling and agricultural applications.
Co-composting involves bio-oxidation of the organic matter into
more stable and less degradable material and can potentially
also reduce the contaminant level in the sludge.9,10 Co-com-
posting of WWTP sludge is in some cases practiced in Europe.11

A relatively new approach for producing sludge suitable for land
application is stabilizing HOCs in sludge with amendment of
strong sorbing materials such as activated carbon (AC) or the
cheaper product biochar (BC).12 Sorbent amendment to reduce
the bioavailability and exposure risk of HOCs has for some years
been used to remediate contaminated sediment,13 and a signif-
icant reduction of pore water polycyclic aromatic hydrocarbon
(PAH) concentration in sewage sludge has been reported as
a result of AC and BC amendment, with AC being the most
effective.12,14

The chemical activity of a HOC is proportional to its freely
dissolved concentration (Cfree) and it quanties the energetic
level of a HOC relative to its reference state and thus expresses
its chemical potential.15 The chemical activity of a substance is
equal in all phases of an equilibrated system, and differences in
chemical activity (i.e., differences in chemical potential) drive
spontaneous processes such as diffusion and partitioning.16

The fate and exposure of a HOC in sludge is closely linked to its
chemical activity, which thus becomes a crucial bioavailability
parameter.16 Additionally, calculated or measured chemical
activities also facilitate comparisons across matrices with
different sorbent properties and capacities.17 This asks for
chemical activity measurements of HOCs in sludge from the
different stages of the WWTP plant as well as in sludge that has
been treated by co-composting and sorbent amendment.

Chemical activity can be determined with equilibrium
sampling devices that utilize the partitioning of freely dissolved
molecules between a matrix and a polymer reference phase.18

The partitioning of molecules between the matrix and the
polymer is driven by differences in chemical activity19 until
reaching a thermodynamic equilibrium (i.e., the same chemical
activity in the polymer and the sample). Solid phase
2 | Environ. Sci.: Processes Impacts, 2018, xx, 1–8
microextraction (SPME) with a polydimethylsiloxane (PDMS)
coated bre is such a partitioning based method that can be
applied in equilibrium mode for measuring chemical activity.19

Solid phase microextraction has the great advantage of minimal
sample preparation, since the PDMS coated bre is used for (i)
efficient enrichment of analytes, (ii) exclusion of the matrix and
(iii) the direct introduction via thermal desorption of the ana-
lytes onto the gas chromatograph. In addition, SPME can be
fully automated, having the advantages of both high
throughput and high reproducibility. Headspace (HS)-SPME gas
chromatography mass spectrometry (GC/MS) was recently
applied to determine optimal composting times for various
treatments of pig manure.20 In that study, SPME was operated in
kinetic mode and the GC-MS analysis was non-target i.e., using
all the peaks in chromatograms acquired from mass spec-
trometry in scan mode.20 The present study goes one step
further by combining equilibrium HS-SPME with non-targeted
GC-MS analysis, which allows determination of chemical
activity ratios from peak height ratios between two samples. We
expected this methodology to be a powerful tool in investigating
differences and changes in the chemical potential of (semi-)
volatile HOCs in sludge.

Hence, the aims of this study were as follows: (1) To compare
the chemical potential of (semi-)volatile HOCs in sludge stages
across a WWTP by applying fully automated HS-SPME GC with
non-target mass spectrometry. (2) To apply the developed
method to the measurement of the reduction in chemical
potential (i.e. exposure level) of (semi-)volatile HOCs obtained
by using co-composting and sorbent amendment, respectively,
as an end treatment of digested sludge.
2. Materials and methods
2.1 Sludge samples

Sludge samples from primary settling, secondary settling aer
aerobic biological treatment, anaerobic digestion (20–25 days),
dewatering, and co-composting were collected as 20 L grab
samples in October 2017 at a Danish WWTP receiving both
industrial and domestic wastewater (250.000 person equiva-
lents). The co-composting involved mixing of the digested and
dewatered sludge (50%) with hay (3–5%) and garden waste
(45–47%) followed by weekly turning over of the 200–250 m
long, 2.5 m high and 5.5 m wide windrows for a period of three
months followed by three months of maturing. Sludge samples
were collected and stored in buckets protected from light.
During transportation the temperature of the samples did not
exceed 20 �C, and they reached the laboratory within 2 h where
they were stabilized with sodium azide (0.02% w/w) and stored
at 4 �C. The dry weight percentage of all sludge samples was
determined aer drying overnight at 105 �C. Aer drying, loss
on ignition (LOI) at 550 �C overnight was used to determine the
organic matter (OM) content of the different sludge stages.
2.2 Sorbent amendment

The digested sludge was treated with AC (carbon powder, acti-
vated, Norit GSX, steam activated, acid washed; Alfa Aesar
This journal is © The Royal Society of Chemistry 2018
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GmbH & Co KG, Karlsruhe, Germany) and BC (Biochar from
Miscanthus, surface area ¼ 362 m2 g�1). For further details,
please refer to ref. 21. Both AC and BC were amended to
a concentration of 5%weight per dry weight. All treated samples
were prepared in duplicate. The digested sludge was mixed with
the adsorbents in 60 mL jars. The AC was added directly to the
sludge while the BC was rst ground with a ceramic pestle and
mortar and aerwards passed through a 2.0 mm sieve to obtain
a more homogeneous powder. Aer addition of the adsorbents,
the jars were put on rollers at 60 rpm for 7 days, at a constant
temperature of 20 �C before HS-SPME-GC/MS analysis. The
digested sludge was prepared in four replicates without sorbent
amendment to serve as reference samples.
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2.3 Chemical analysis

For all analyses, 6 mL sludge sample was poured into 20 mL
amber HS vials (Mikrolab Aarhus, Denmark) and sealed with
magnetic screw caps with an 18 mm thread PTFE/silicone
septum (Sigma-Aldrich, Copenhagen, Denmark). Negligible
depletion conditions were ensured as the organic carbon
content was at least 1800 times higher than the PDMS mass on
the bre. The HS-SPME-GC/MS analysis was performed with
a CTC PAL RSI 85 auto sampler (CTC Analytics AG, Zwingen,
Switzerland) mounted on an Agilent 5977A MSD GC coupled to
a 7890B MS (Agilent Technologies, CA, USA). The SPME bre
used was 7 mm (bonded) PDMS with needle size 23 (Supelco,
Bellafonte, PA, USA). The SPME bre was conditioned according
to the manufacturer's instructions prior to use. The optimal
SPME sampling time was determined aer a kinetic study
where sampling was performed at 5, 10, 20, 30 and 60 min at
a sampling temperature of 35 �C. Consequently, the fully
automated SPME sampling was conducted at 35 �C for 60min at
an agitation speed of 250 rpm. The bre was desorbed for
10 min in the split/splitless inlet at 315 �C. The long desorption
time at high temperature was chosen to ensure that the whole
HOCmixture was desorbed and injected, as well as the bre was
cleaned before next sampling. The injection inlet was operated
in splitless mode with a septum purge ow of 3 mLmin�1 for 10
min. Thereaer, the purge ow to the split vent was 100 mL
min�1 for 10 min and then the gas saver was activated. Post-
desorption conditioning time for the bre was 1 min. The GC/
MS system was operated in electron ionization (EI) mode at
70 eV. An Agilent 122-5562UI DB-5ms 60 m � 250 mm � 25 mm
column was used. The carrier gas was helium at a ow rate of
1.2 mL min�1. The initial column temperature was set to 50 �C
for 10 min. The temperature was then increased at a rate of
10 �C min�1 to 150 �C which was held for 20 min before
increasing to 250 �C at a rate of 1.5 �C min�1 and nally the
temperature was increased to 310 �C at a rate of 30 �C min�1.
The nal temperature was held for 1 min. The total GC cycle
time was 110 min. The MSD transfer line temperature was set to
250 �C. The MS source temperature was 230 �C. The samples
were analysed by full scan MS from 50 to 500 amu, and with
a gain factor of 3. Headspace vials with 5 mL of Milli-Q water
and empty vials were included in each run as blanks. Further-
more, duplicate samples of 5& diesel oil in triglyceride oil
This journal is © The Royal Society of Chemistry 2018
(MCT-Öl, MANSKE GmbH, Schwäbisch Hall, Germany) served
as a referencemixture which was used to account for differences
in instrument sensitivity, and retention time dri, and to
conrm identication of n-alkanes in the sludge. The reference
mixture was analysed as all the other samples. For conrmation
of identication 0.01& decamethylpentasiloxane (D5) (purity
97%, Sigma-Aldrich A/S, Copenhagen, Denmark), tetradecane
($99% purity, Sigma-Aldrich Chemie GmbH, Munich, Ger-
many) and undecane ($99% purity, Fluka AG, Switzerland) in
miglyol (Caesar & Loretz GmbH, Hilden, Germany) were ana-
lysed with the same method as that of the sludge samples.
2.4 Data processing

The full scan data les obtained using ChemStation (Agilent
Technologies) were exported to MassHunter Qualitative anal-
ysis vers. B-07.00 (Agilent Technologies) for further data treat-
ment. The Agile 2 integrator was used and compounds were
found by deconvolution using the algorithm for molecular
features. The subtracted background spectrum was set to be the
spectrum at the peak start. The compound lter was set to
absolute area $ 5000 counts, and relative area $ 1% of the
largest peak. The height lter was set to relative height$ 2.00%
of the largest peak. In practice this was absolute peak height $
5000. Peak height $ 5000 was considered the “quantication
level” whereas a peak height < 5000 but distinguishable from
the baseline was assigned a value of 1000 and marked with the
symbol ‘*’ in the graphs. The abundance value of the height of
the base peak m/z for each molecular feature found was used in
further data treatment. Only peak heights from the same
sequence were compared, and activity ratios were calculated
from data from the same sequence. The “total peak area” is the
sum of areas extracted by MassHunter in the deconvolution.
Peaks with retention time less than 15 min and more than
60 min were excluded from this analysis as peaks appearing
before 15 min were considered background noise, and a very
limited number of peaks appeared aer 60 min (180 �C).
Tentative compound identication was performed using the
spectral library NIST vers. 2.2. Manual check of m/z ratios, base
peak heights and compound ID was performed using Enhanced
MSD ChemStation vers. D.03.00.611. Final data treatment and
modelling were performed using GraphPad Prism vers. 7.03.
3. Results and discussion
3.1 Equilibrium times of HS-SPME

For evaluation of equilibrium in the sludge–air–PDMS bre
system, 16 molecular features (retention time and base peak
ion; listed in Table ESI1 in the ESI†) were selected across the
entire chromatogram with the only selection criterion being
that they should cover the retention time range from 15–60min.
Examples of compounds with short, medium and long reten-
tion times are shown in Fig. 1 (the remaining are shown in
Fig. ESI1 in the ESI†).

A simple rst order equation was tted to the measurements
and the obtained plateau was compared to the measured
response for a 60 minute sampling time (Fig. ESI2 in the ESI†).
Environ. Sci.: Processes Impacts, 2018, xx, 1–8 | 3
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Fig. 1 Base peak height of molecular features with short, medium and long retention times against headspace sampling time.
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For fourteen of the selected molecular features, measurements
aer 60 minutes of sampling were very similar to or within
a factor of two from the plateau. The sum of areas under all
molecular features with 15–60min retention time did also reach
equilibrium (Fig. ESI1 in ESI†) within 60 min. It was concluded
that the developed SPME method reached (near) equilibrium
within 60 min over the full range of molecular features detected
and hence it is capable of measuring the chemical potential of
(semi-)volatile HOCs in sludge.
Fig. 2 (A) Sum of peak areas of molecular features with 15 to 60 min
retention time in each measured sludge stage. (B) Total number of
molecular features extracted and eluting in the 15 to 60 min retention
time window in each measured sludge stage. P: primary; S: secondary;
D: digested; DD: digested and dewatered and C: composted sludge; B:
blank.
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3.2 Chemical potential of (semi-)volatile HOCs in sludge
across a WWTP treatment chain

To compare the chemical potential of (semi-)volatile HOCs in
sludge stages across a WWTP, the developed fully automated
equilibrium HS-SPME-GC/MS method was applied on the ve
sludge stages without any sample preparation, other than the
initial stabilization with azide. The sum of all peak areas
(Fig. 2A) and the total number of peaks (Fig. 2B) detected in the
deconvolution were then used for initial assessment of differ-
ences and changes in the chemical potential of HOCs in the
different sludge stages.

The total area and the number of peaks increased from
primary to secondary to digested sludge. As the total peak
number also increased, it was not only the chemical activity of
the compounds present that was increasing, but also more
compounds were appearing, either degradation products or
compounds “released” during digestion of the matrix. The
levels were similar in the digested and in the dewatered sludge
whereas the levels decreased dramatically in the composted
stage. The observations on the composted stage will be further
discussed in Section 3.3. Recently, we reported similar obser-
vations of the increase from secondary to digested sludge using
a different kind of equilibrium sampler to measure chemical
potential of PAHs in secondary and digested sludge.22 In that
study, as well as in the present, the sorptive capacity in the form
of OM was reduced in the digested compared to the secondary
sludge (67 to 57% on dry weight basis) (Table 1). As the OM
reduces during digestion the chemical potential of HOCs in the
aqueous phase of the sludge increases because the sorption
capacity is reduced, a phenomenon called solvent depletion.23 It
is well-established within wastewater science that a drawback of
the digestion treatment is the increase in the concentration of
non-degradable hydrophobic chemicals associated with the
sludge.24 The novelty of the present study is an analytical
4 | Environ. Sci.: Processes Impacts, 2018, xx, 1–8
approach that can actually measure this increase in terms of
chemical potential.

Both a reduction in OM and a change in the quality of the
OM present will change the chemical potential of the chemicals
in the aqueous phase. The primary and secondary sludge had
similar OM contents (Table 1), but the quality of the two types of
OM may differ substantially, which might explain the increase
in chemical potential from primary to secondary sludge. For
example, composition analysis of various lipids in the primary
sludge revealed plant and animal origins, while the lipids from
the activated sludge were mainly of microbial origin.25 The level
and number of peaks did not differ signicantly between the
digested and the dewatered sludge, which is reasonable as the
only process between the two is removal of water by application
of a dewatering agent.
This journal is © The Royal Society of Chemistry 2018



Table 1 Dry weight (DW) and organic matter (OM) content in the five
different sludge stages

Sludge stage
Dry weighta

(% of total weight)
OMb

(% of dry weight)

Primary 2.24 67.5
Secondary 8.31 66.5
Digested 4.66 56.5
Dewatered 25.0 57.1
Composted 48.5 33.0

a Measured as weight loss aer drying overnight at 105 �C. b Measured
using loss on ignition at 550 �C overnight.
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To evaluate the differences in chemical potential at the single
substance level between sludge stages, activity ratios (ARs) were
calculated relative to the level in the primary sludge (Fig. 3). Four
substances representing the general observations were selected
(Fig. 3A–D). The base peak heights for all the selected substances
are presented in Fig. ESI4 and ESI5 in the ESI.† The four
substances, limonene used as a fragrance in cleaning and
personal care products, p-cresol from wood preservation and
a metabolite from hydrocarbon degradation, D5 (conrmation of
identication given in Table ESI2 and Fig. ESI3 in the ESI†) from
personal care products and industrial applications, and a widely
used industrial solvent alkylated benzene, are commonly re-
ported in total extractions of sewage sludge.3,26 The ARs of limo-
nene followed the observation on total area; the chemical activity
increased from primary to secondary and to digested and dewa-
tered sludge. The included alkylated benzene followed the same
pattern. The AR of D5 in both the secondary and digested sample
was at the same level as in the primary sludge, i.e. around one,
whereas in the dewatered sludge it increased to four. This
observation raises the suspicion that the dewatering agent used
by the WWTP contained D5. For WWTPs using the produced
biogas as an energy source, D5 and other similar siloxanes cause
problems,27 which is why there is not only an environmental but
also technical interest in understanding the behaviour of D5
within WWTP processes. p-Cresol, as the only studied substance,
has a higher AR in the secondary than in both the digested and
the dewatered sludge, pointing in the direction of some degra-
dation of this small molecule during the WWTP process.

In addition, ARs of n-alkanes are included in Fig. 3E. The
levels of alkanes in the primary sludge were relatively low, and
they increased to secondary, and from secondary to digested
sludge. Previous studies also report ndings of n-alkanes in the
nal sludge and the origin might be spills of petroleum
oils.26,28,29 As the alkanes are readily biodegradable and expected
to degrade before the wastewater reaches the WWTP, the
increase can also be due to alkane formation within the treat-
ment plant. This is consistent with the literature as the end-
product of fatty acid biosynthesis, acyl-ACP, can be converted
into acyl-aldehyde which, in the presence of aldehyde decar-
bonylase, can be converted into alkanes.30

It has previously been reported that the unsaponiable
organicmatter of the sludgematrix contains C9–C16 n-alkanes,31

which is why research intoWWTP sludge as a potential biofuel is
This journal is © The Royal Society of Chemistry 2018
relevant.32 All the observed alkanes in the present study
(C11–C17) had increasing ARs relative to the primary sludge
until the dewatered sludge stage.
3.3 Co-composting as an end treatment to reduce the
chemical potential of (semi-)volatile HOCs

As described in the previous section the general observation for
the (semi-)volatile HOCs was that their chemical potentials
increased during the WWTP process. To reduce the potential
harmful effects that (semi-)volatile and other chemicals might
have on the environment an additional end treatment is bene-
cial before applying the sludge on arable soil. Co-composting is
one way to do this. Application of the developed equilibrium HS-
SPME-GC/MS method on co-composted sludge from the same
WWTP as the rest of the samples revealed that the chemical
potential was reduced signicantly and beyond simple dilution
effects from additional feedstock. The reduction was observed
both on the single substance level (Fig. ESI4 and ESI5 in the ESI†)
and on the level of the HOC mixture as a whole (Fig. 2). By co-
composting, the reduction in chemical potential of the mixture
as a whole was 95% (�0%), and the total number of peaks was
reduced by 53% (�2%). The reduction in the co-composted
sludge was observed compared to both the dewatered and the
primary sludge. This means that, for the compounds studied
here, the full treatment chain including co-composting is effec-
tive in reducing the chemical potential of contaminants.

(Semi-)volatile HOCs were removed in the co-composting
stage either by volatilization, degradation or sorption to the
added mixing material, or a combination of these processes. In
Fig. 4 the activity ratios of 13 different substances in the co-
composted sludge to the dewatered sludge are shown. Phys-
ical–chemical properties of the 13 substances are listed in
Table ESI3 in the ESI.† The level of removal was substance
dependent. The alkanes were almost completely removed by
the co-composting, which is reasonable as they are highly
volatile and biodegradable. Humulene is also volatile and in
addition the chemical activity reduction observed in the co-
composted sludge can be due to sorption to the biowaste that
the sludge was mixed with. Although the activity of D5 was
reduced, D5 was not completely removed in the co-composting
despite the high volatility of the compound. The sludge does
already have a large sorption capacity which might buffer the
fraction of D5 available for sorption on the biowaste added in
the co-composting. This “buffer-capacity” may also be the
reason why the very volatile D5 was not completely removed by
volatilisation. Versalide, a fragrance in detergents and personal
care products, is less volatile and the least reduced of the
studied compounds. As for D5, the loads of versalide and
similar hydrophobic musk fragrances in wastewater and
thereby in sludge are high.3,33 From an environmental
perspective the incomplete reduction is of concern as musk
fragrances have potential estrogenic and anti-estrogenic
effects34 while D5 and other cyclic siloxanes have potential
adverse effects on aquatic and soil living organisms.33

Amendment with AC and BC was also tested as an end
treatment to reduce the chemical potential of (semi-)volatile
Environ. Sci.: Processes Impacts, 2018, xx, 1–8 | 5



Fig. 3 Activity ratios expressed as peak height in x sludge stage divided by peak height in primary sludge. The box plots are mean, min and max,
and standard deviation for (A) limonene, (B) p-cresol, (C) D5, (D) dodecan-6-ylbenzene and (E) detected n-alkanes. Values below the data
processing limit were manually checked and marked with the symbol ‘*’ if present in the chromatogram and data manually extracted in
ChemStation. n ¼ 5 for D5 and dodecan-6-ylbenzene, and n ¼ 3 for limonene, p-cresol and alkanes. ID of molecular features: retention time;
m/z of base peak ion [tentative ID from NIST]. P: primary; S: secondary; D: digested; DD: digested and dewatered sludge.
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HOCs. The non-activated Miscanthus BC used in this study did
not have a signicant reduction effect on the chemical activity,
and hence Cfree, of (semi-)volatile HOC in sludge (Fig. ESI6 in
the ESI†). Activated carbon did have a reduction effect, though,
both on the total (semi-)volatile HOC level (Fig. ESI6 in the ESI†)
and on single substances' level. However the variability between
the batches of AC treated sludge was too high as some batches
showed signicant reductions while others did not. Therefore
data on the single substance level is not included. The reduction
6 | Environ. Sci.: Processes Impacts, 2018, xx, 1–8
in chemical potential of the mixture as a whole was 38%, and
the total number of peaks was reduced by 15% aer amend-
ment with 5% AC in the batch where reduction was observed.
Adsorption on AC is stronger if p–p dispersion interactions
between the aromatic structures on the sorbent surface and the
adsorbate are a possibility.35 For the (semi-)volatile compounds
studied here, this was the case only with dodecan-6-ylbenzene,
an alkylated aromatic compound which was reduced to some
degree (data not shown).
This journal is © The Royal Society of Chemistry 2018
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Fig. 4 Chemical activity ratios of semi-volatile HOCs in composted
sludge relative to dewatered sludge sorted by value. n ¼ 3, open
symbols are ARs where the peak height in the composted stage in at
least 1 of the 3 samples was <detection limit, but distinguishable from
the baseline and assigned a value of 1000.
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4. Conclusions

A fully automated equilibrium HS-SPME-GC/MS method was
successfully developed and applied on four sludge stages from
all steps in a WWTP and the subsequent co-composting end-
treatment. With the method, it was possible to determine
changes in the chemical potential of (semi-)volatile molecular
features in the sludge, as well as changes in the whole mixture
of (semi-)volatile HOCs within the sludge. Generally, chemical
activity increased from primary, to secondary, to digested
sludge and the level in the dewatered sludge was not signi-
cantly different from the level in the digested sludge. The cyclic
siloxane D5 behaved differently as the level was similar until the
dewatering step, where the level increased 4-fold. For all single
substances studied and for the mixture as a whole the co-
composting end-treatment was generally effective in reducing
the chemical potential of (semi-)volatile HOCs again. However,
the incomplete reduction of cyclic siloxanes such as D5 and
a musk fragrance requires further investigations. With the
purpose of optimising the overall reduction in chemical
potential of potentially harmful compounds investigations of
the mechanisms that increase chemical potential especially
during the anaerobic digestion process are needed.
40
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