10,407 research outputs found

    Duration of untreated psychosis and social function: 1-year follow-up study of first-episode schizophrenia.

    Get PDF
    BACKGROUND: In first-episode schizophrenia, longer duration of untreated psychosis (DUP) predicts poorer outcomes. AIMS: To address whether the relationship between DUP and outcome is a direct causal one or the result of association between symptoms and/or cognitive functioning and social functioning at the same time point. METHOD: Symptoms, social function and cognitive function were assessed in 98 patients with first-episode schizphrenia at presentation and 1 year later. RESULTS: There was no significant clinical difference between participants with short and long DUP at presentation. Linear regression analyses revealed that longer DUP significantly predicted more severe positive and negative symptoms and poorer social function at 1 year, independent of scores at presentation. Path analyses revealed independent direct relationships between DUP and social function, core negative symptoms and positive symptoms. There was no significant association between DUP and cognition. CONCLUSIONS: Longer DUP predicts poor social function independently of symptoms. The findings underline the importance of taking account of the phenomenological overlap between measures of negative symptoms and social function when investigating the effects of DUP

    The (In)Stability of Planetary Systems

    Full text link
    We present results of numerical simulations which examine the dynamical stability of known planetary systems, a star with two or more planets. First we vary the initial conditions of each system based on observational data. We then determine regions of phase space which produce stable planetary configurations. For each system we perform 1000 ~1 million year integrations. We examine upsilon And, HD83443, GJ876, HD82943, 47UMa, HD168443, and the solar system (SS). We find that the resonant systems, 2 planets in a first order mean motion resonance, (HD82943 and GJ876) have very narrow zones of stability. The interacting systems, not in first order resonance, but able to perturb each other (upsilon And, 47UMa, and SS) have broad regions of stability. The separated systems, 2 planets beyond 10:1 resonance, (we only examine HD83443 and HD168443) are fully stable. Furthermore we find that the best fits to the interacting and resonant systems place them very close to unstable regions. The boundary in phase space between stability and instability depends strongly on the eccentricities, and (if applicable) the proximity of the system to perfect resonance. In addition to million year integrations, we also examined stability on ~100 million year timescales. For each system we ran ~10 long term simulations, and find that the Keplerian fits to these systems all contain configurations which may be regular on this timescale.Comment: 37 pages, 49 figures, 13 tables, submitted to Ap

    A Symplectic Integrator for Hill's Equations

    Full text link
    Hill's equations are an approximation that is useful in a number of areas of astrophysics including planetary rings and planetesimal disks. We derive a symplectic method for integrating Hill's equations based on a generalized leapfrog. This method is implemented in the parallel N-body code, PKDGRAV and tested on some simple orbits. The method demonstrates a lack of secular changes in orbital elements, making it a very useful technique for integrating Hill's equations over many dynamical times. Furthermore, the method allows for efficient collision searching using linear extrapolation of particle positions.Comment: 15 pages, 2 figures; minor revisions; accepted for publication in the Astronomical Journa

    Determining the influence and effects of manufacturing variables on sulfur dioxide cells

    Get PDF
    A survey of the Li/SO2 manufacturing community was conducted to determine where variability exists in processing. The upper and lower limits of these processing variables might, by themselves or by interacting with other variables, influence safety, performance, and reliability. A number of important variables were identified and a comprehensive design experiment is being proposed to make the proper determinations

    N-Body Simulations of Growth from 1 km Planetesimals at 0.4 AU

    Full text link
    We present N-body simulations of planetary accretion beginning with 1 km radius planetesimals in orbit about a 1 solar mass star at 0.4 AU. The initial disk of planetesimals contains too many bodies for any current N-body code to integrate; therefore, we model a sample patch of the disk. Although this greatly reduces the number of bodies, we still track in excess of 10^5 particles. We consider three initial velocity distributions and monitor the growth of the planetesimals. The masses of some particles increase by more than a factor of 100. Additionally, the escape speed of the largest particle grows considerably faster than the velocity dispersion of the particles, suggesting impending runaway growth, although no particle grows large enough to detach itself from the power law size-frequency distribution. These results are in general agreement with previous statistical and analytical results. We compute rotation rates by assuming conservation of angular momentum around the center of mass at impact and that merged planetesimals relax to spherical shapes. At the end of our simulations, the majority of bodies that have undergone at least one merger are rotating faster than the breakup frequency. This implies that the assumption of completely inelastic collisions (perfect accretion), which is made in most simulations of planetary growth at sizes 1 km and above, is inappropriate. Our simulations reveal that, subsequent to the number of particles in the patch having been decreased by mergers to half its initial value, the presence of larger bodies in neighboring regions of the disk may limit the validity of simulations employing the patch approximation.Comment: 19 pages, 32 figures, 5 tables, accepted to Icaru

    Triangulating Abuse Liability Assessment for Flavoured Cigar Products Using Physiological, Behavioural Economic and Subjective Assessments: A Within-subjects Clinical Laboratory Protocol

    Get PDF
    Introduction In the USA, Food and Drug Administration regulations prohibit the sale of flavoured cigarettes, with menthol being the exception. However, the manufacture, advertisement and sale of flavoured cigar products are permitted. Such flavourings influence positive perceptions of tobacco products and are linked to increased use. Flavourings may mask the taste of tobacco and enhance smoke inhalation, influencing toxicant exposure and abuse liability among novice tobacco users. Using clinical laboratory methods, this study investigates how flavour availability affects measures of abuse liability in young adult cigarette smokers. The specific aims are to evaluate the effect of cigar flavours on nicotine exposure, and behavioural and subjective measures of abuse liability. Methods and analyses Participants (projected n=25) are healthy smokers of five or more cigarettes per day over the past 3 months, 18–25 years old, naive to cigar use (lifetime use of 50 or fewer cigar products and no more than 10 cigars smoked in the past 30 days) and without a desire to quit cigarette smoking in the next 30 days. Participants complete five laboratory sessions in a Latin square design with either their own brand cigarette or a session-specific Black & Mild cigar differing in flavour (apple, cream, original and wine). Participants are single-blinded to cigar flavours. Each session consists of two 10-puff smoking bouts (30 s interpuff interval) separated by 1 hour. Primary outcomes include saliva nicotine concentration, behavioural economic task performance and response to various questionnaire items assessing subjective effects predictive of abuse liability. Differences in outcomes across own brand cigarette and flavoured cigar conditions will be tested using linear mixed models

    Combined effects of extrinsic and intrinsic factors on otolith chemistry: Implications for environmental reconstructions

    Get PDF
    Otolith chemistry is widely used to understand patterns of fish movement and habitat use, with significant progress made in understanding the influence of environmental factors on otolith elemental uptake. However, few studies consider the interactive effect that environmental and genetic influences have on otolith chemistry. This study assessed the influence of salinity, temperature, and genetics on the incorporation of three key elements (strontium (Sr), barium (Ba), and magnesium (Mg)) into the otoliths of two discrete stocks of mulloway (Argyrosomus japonicus) fingerlings reared in captivity. Elemental analysis via laser ablation inductively coupled – plasma mass spectrometry found that stock (genetics) had a significant interactive effect on otolith Sr:Ca (salinity × temperature × stock) and Ba:Ca (salinity × stock), but did not affect Mg:Ca incorporation. Mg:Ca showed a positive relationship with temperature for both stocks. The incorporation of some elements into the otoliths of fish is the result of complex interactions between extrinsic and intrinsic factors. These findings highlight the necessity to also consider stock along with environmental variables when using trace elemental signatures to reconstruct the environmental histories of fish.Thomas C. Barnes, Bronwyn M. Gillander

    The spin-orbit interaction as a source of new spectral and transport properties in quasi-one-dimensional systems

    Full text link
    We present an exact theoretical study of the effect of the spin-orbit (SO) interaction on the band structure and low temperature transport in long quasi-one-dimensional electron systems patterned in two-dimensional electron gases in zero and weak magnetic fields. We reveal the manifestations of the SO interaction which cannot in principle be observed in higher dimensional systems.Comment: 5 pages including 5 figures; RevTeX; to appear in Phys.Rev.B (Rapid Communications

    'A mockery of equality': An exploratory investigation into disabled activists' views of the Paralympic Games

    Get PDF
    This article offers an exploratory analysis of the opinions of disabled activists towards the Paralympic Games. With the use of a qualitative online survey, the work focuses on the perceptions of disabled individuals (n = 32) who are not Paralympic athletes but are affiliated to the disability rights group, the United Kingdom Disabled People's Council. Working on the premise that the views of disabled activists have been excluded from Paralympic sports discourse to date, the results illustrate a nuanced yet negative view of the Games to contrast with an existing, yet overly positive, academic narrative. Participants were particularly cynical of the portrayal and production of the Games and its Paralympic athletes as they perceived that the wider population of disabled people is misrepresented. The overwhelming perception in this preliminary analysis suggests that the Paralympic Games can be counterproductive to disability rights beyond sport

    ROCKETSHIP: a flexible and modular software tool for the planning, processing and analysis of dynamic MRI studies

    Get PDF
    Background: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a promising technique to characterize pathology and evaluate treatment response. However, analysis of DCE-MRI data is complex and benefits from concurrent analysis of multiple kinetic models and parameters. Few software tools are currently available that specifically focuses on DCE-MRI analysis with multiple kinetic models. Here, we developed ROCKETSHIP, an open-source, flexible and modular software for DCE-MRI analysis. ROCKETSHIP incorporates analyses with multiple kinetic models, including data-driven nested model analysis. Results: ROCKETSHIP was implemented using the MATLAB programming language. Robustness of the software to provide reliable fits using multiple kinetic models is demonstrated using simulated data. Simulations also demonstrate the utility of the data-driven nested model analysis. Applicability of ROCKETSHIP for both preclinical and clinical studies is shown using DCE-MRI studies of the human brain and a murine tumor model. Conclusion: A DCE-MRI software suite was implemented and tested using simulations. Its applicability to both preclinical and clinical datasets is shown. ROCKETSHIP was designed to be easily accessible for the beginner, but flexible enough for changes or additions to be made by the advanced user as well. The availability of a flexible analysis tool will aid future studies using DCE-MRI
    • …
    corecore