3,665 research outputs found

    The DiskMass Survey. VIII. On the Relationship Between Disk Stability and Star Formation

    Full text link
    We study the relationship between the stability level of late-type galaxy disks and their star-formation activity using integral-field gaseous and stellar kinematic data. Specifically, we compare the two-component (gas+stars) stability parameter from Romeo & Wiegert (Q_RW), incorporating stellar kinematic data for the first time, and the star-formation rate estimated from 21cm continuum emission. We determine the stability level of each disk probabilistically using a Bayesian analysis of our data and a simple dynamical model. Our method incorporates the shape of the stellar velocity ellipsoid (SVE) and yields robust SVE measurements for over 90% of our sample. Averaging over this subsample, we find a meridional shape of sigma_z/sigma_R = 0.51^{+0.36}_{-0.25} for the SVE and, at 1.5 disk scale lengths, a stability parameter of Q_RW = 2.0 +/- 0.9. We also find that the disk-averaged star-formation-rate surface density (Sigma-dot_e,*) is correlated with the disk-averaged gas and stellar mass surface densities (Sigma_e,g and Sigma_e,*) and anti-correlated with Q_RW. We show that an anti-correlation between Sigma-dot_e,* and Q_RW can be predicted using empirical scaling relations, such that this outcome is consistent with well-established statistical properties of star-forming galaxies. Interestingly, Sigma-dot_e,* is not correlated with the gas-only or star-only Toomre parameters, demonstrating the merit of calculating a multi-component stability parameter when comparing to star-formation activity. Finally, our results are consistent with the Ostriker et al. model of self-regulated star-formation, which predicts Sigma-dot_e,*/Sigma_e,g/sqrt(Sigma_e,*). Based on this and other theoretical expectations, we discuss the possibility of a physical link between disk stability level and star-formation rate in light of our empirical results.Comment: Accepted for publication in ApJ. 15 pages, 6 figures, 2 tables. An electronic version of Table 1 is available by request, or at http://www.astro.rug.nl/~westfall/research/dmVIII_table1.tx

    Emergence of enterovirus 71 C4a in Denmark, 2009 to 2013

    Get PDF
    Enterovirus (EV) 71 has emerged as a primary cause of severe neurologic enterovirus infection in the aftermath of the global polio eradication effort. Eleven subgenotypes of EV71 exist, the C4 subgenotype being associated with large outbreaks in Asia with high mortality rates. This subgenotype has rarely been reported in Europe. In the period between 1 January 2009 and 31 December 2013 a total of 1,447 EV positive samples from 1,143 individuals were sent to the Statens Serum Institute (SSI), and 938 samples from 913 patients were genotyped at the Danish National World Health Organization Reference laboratory for Poliovirus at SSI. Echovirus 6 (E06) (n=141 patients), echovirus 30 (E30) (n=114), coxsackievirus A6 (CA06) (n=96) and EV71 (n=63) were the most prevalent genotypes. We observed a shift in circulating EV71 subgenotypes during the study period, with subgenotype C4 dominating in 2012. A total of 34 EV71 patients were found to be infected with strains of the C4 subgenotype, and phylogenetic analysis revealed that they belonged to the C4a lineage. In our study, the proportions of cases with cerebral and/or sepsis-like symptoms were similar in those affected by C4a (19/34) and those with C1 and C2 (15/35). The majority (n=30) of the 34 EV71 C4 cases were children ≤5 years of age, and males (n=22) were over-represented. Continued EV surveillance is required to monitor the spread of EV71 C4 in Denmark and the rest of Europe. </jats:p

    The DiskMass Survey. X. Radio synthesis imaging of spiral galaxies

    Get PDF
    We present results from 21 cm radio synthesis imaging of 28 spiral galaxies from the DiskMass Survey obtained with the VLA, WSRT, and GMRT facilities. We detail the observations and data reduction procedures and present a brief analysis of the radio data. We construct 21 cm continuum images, global HI emission-line profiles, column-density maps, velocity fields, and position-velocity diagrams. From these we determine star formation rates (SFRs), HI line widths, total HI masses, rotation curves, and azimuthally-averaged radial HI column-density profiles. All galaxies have an HI disk that extends beyond the readily observable stellar disk, with an average ratio and scatter of R_{HI}/R_{25}=1.35+/-0.22, and a majority of the galaxies appear to have a warped HI disk. A tight correlation exists between total HI mass and HI diameter, with the largest disks having a slightly lower average column density. Galaxies with relatively large HI disks tend to exhibit an enhanced stellar velocity dispersion at larger radii, suggesting the influence of the gas disk on the stellar dynamics in the outer regions of disk galaxies. We find a striking similarity among the radial HI surface density profiles, where the average, normalized radial profile of the late-type spirals is described surprisingly well with a Gaussian profile. These results can be used to estimate HI surface density profiles in galaxies that only have a total HI flux measurement. We compare our 21 cm radio continuum luminosities with 60 micron luminosities from IRAS observations for a subsample of 15 galaxies and find that these follow a tight radio-infrared relation, with a hint of a deviation from this relation at low luminosities. We also find a strong correlation between the average SFR surface density and the K-band surface brightness of the stellar disk.Comment: 22 pages + Appendix, 16 figures + Atlas, 5 tables. Accepted for publication in Astronomy & Astrophysic

    The DiskMass Survey. II. Error Budget

    Get PDF
    We present a performance analysis of the DiskMass Survey. The survey uses collisionless tracers in the form of disk stars to measure the surface-density of spiral disks, to provide an absolute calibration of the stellar mass-to-light ratio, and to yield robust estimates of the dark-matter halo density profile in the inner regions of galaxies. We find a disk inclination range of 25-35 degrees is optimal for our measurements, consistent with our survey design to select nearly face-on galaxies. Uncertainties in disk scale-heights are significant, but can be estimated from radial scale-lengths to 25% now, and more precisely in the future. We detail the spectroscopic analysis used to derive line-of-sight velocity dispersions, precise at low surface-brightness, and accurate in the presence of composite stellar populations. Our methods take full advantage of large-grasp integral-field spectroscopy and an extensive library of observed stars. We show that the baryon-to-total mass fraction (F_b) is not a well-defined observational quantity because it is coupled to the halo mass model. This remains true even when the disk mass is known and spatially-extended rotation curves are available. In contrast, the fraction of the rotation speed supplied by the disk at 2.2 scale lengths (disk maximality) is a robust observational indicator of the baryonic disk contribution to the potential. We construct the error-budget for the key quantities: dynamical disk mass surface-density, disk stellar mass-to-light ratio, and disk maximality (V_disk / V_circular). Random and systematic errors in these quantities for individual galaxies will be ~25%, while survey precision for sample quartiles are reduced to 10%, largely devoid of systematic errors outside of distance uncertainties.Comment: To appear in ApJ; 88 pages, 4 tables, 18 figures. High-resolution version available at http://www.astro.wisc.edu/~mab/publications/DMS_II_preprint.pd

    The DiskMass Survey. I. Overview

    Get PDF
    We present a survey of the mass surface-density of spiral disks, motivated by outstanding uncertainties in rotation-curve decompositions. Our method exploits integral-field spectroscopy to measure stellar and gas kinematics in nearly face-on galaxies sampled at 515, 660, and 860 nm, using the custom-built SparsePak and PPak instruments. A two-tiered sample, selected from the UGC, includes 146 nearly face-on galaxies, with B<14.7 and disk scale-lengths between 10 and 20 arcsec, for which we have obtained H-alpha velocity-fields; and a representative 46-galaxy subset for which we have obtained stellar velocities and velocity dispersions. Based on re-calibration of extant photometric and spectroscopic data, we show these galaxies span factors of 100 in L(K) (0.03 < L/L(K)* < 3), 8 in L(B)/L(K), 10 in R-band disk central surface-brightness, with distances between 15 and 200 Mpc. The survey is augmented by 4-70 micron Spitzer IRAC and MIPS photometry, ground-based UBVRIJHK photometry, and HI aperture-synthesis imaging. We outline the spectroscopic analysis protocol for deriving precise and accurate line-of-sight stellar velocity dispersions. Our key measurement is the dynamical disk-mass surface-density. Star-formation rates and kinematic and photometric regularity of galaxy disks are also central products of the study. The survey is designed to yield random and systematic errors small enough (i) to confirm or disprove the maximum-disk hypothesis for intermediate-type disk galaxies, (ii) to provide an absolute calibration of the stellar mass-to-light ratio well below uncertainties in present-day stellar-population synthesis models, and (iii) to make significant progress in defining the shape of dark halos in the inner regions of disk galaxies.Comment: To appear in ApJ; 72 pages, 3 tables, 18 figures. High-resolution version available at http://www.astro.wisc.edu/~mab/publications/DMS_I_preprint.pd

    Electronic structure and light-induced conductivity in a transparent refractory oxide

    Get PDF
    Combined first-principles and experimental investigations reveal the underlying mechanism responsible for a drastic change of the conductivity (by 10 orders of magnitude) following hydrogen annealing and UV-irradiation in a transparent oxide, 12CaO.7Al2O3, found by Hayashi et al. The charge transport associated with photo-excitation of an electron from H, occurs by electron hopping. We identify the atoms participating in the hops, determine the exact paths for the carrier migration, estimate the temperature behavior of the hopping transport and predict a way to enhance the conductivity by specific doping.Comment: 4 pages including 4 figure
    corecore