5,745 research outputs found

    Reliability in One-Repetition Maximum Performance in People with Parkinson's Disease

    Get PDF
    Strength training is an effective modality to improve muscular strength and functional performance in people with Parkinson's disease (PWP). One-repetition maximum (1-RM) is the gold standard assessment of strength; however, PWP suffer from day-to-day variations in symptom severity and performance characteristics, potentially adversely affecting the reliability of 1-RM performance. Herein, we assessed the reliability of 1-RM in PWP. Forty-six participants completed two sessions of 1-RM testing of knee extension, knee flexion, chest press, and biceps curl at least 72 hours apart. Significantly differences between testing sessions were identified for knee extension (P < 0.001), knee flexion (P = 0.042), and biceps curl (P = 0.001); however, high reliability (ICC > 0.90) was also identified between sessions. Interestingly, almost third of subjects failed to perform better on the second testing session. These findings suggest that 1-RM testing can be safely performed in PWP and that disease-related daily variability may influence 1-RM performance

    Multi-neuronal refractory period adapts centrally generated behaviour to reward

    Get PDF
    Oscillating neuronal circuits, known as central pattern generators (CPGs), are responsible for generating rhythmic behaviours such as walking, breathing and chewing. The CPG model alone however does not account for the ability of animals to adapt their future behaviour to changes in the sensory environment that signal reward. Here, using multi-electrode array (MEA) recording in an established experimental model of centrally generated rhythmic behaviour we show that the feeding CPG of Lymnaea stagnalis is itself associated with another, and hitherto unidentified, oscillating neuronal population. This extra-CPG oscillator is characterised by high population-wide activity alternating with population-wide quiescence. During the quiescent periods the CPG is refractory to activation by food-associated stimuli. Furthermore, the duration of the refractory period predicts the timing of the next activation of the CPG, which may be minutes into the future. Rewarding food stimuli and dopamine accelerate the frequency of the extra-CPG oscillator and reduce the duration of its quiescent periods. These findings indicate that dopamine adapts future feeding behaviour to the availability of food by significantly reducing the refractory period of the brain's feeding circuitry

    The Lived Experience of an In-Season Concussion Amongst NCAA Division I Student-Athletes

    Get PDF
    International Journal of Exercise Science 7(1) : 62-74, 2014. The clinical presentation and recovery from a sports-related concussion has been well-documented in the sports medicine literature; however, the post-injury experience of the injured individual has been largely unexplored. Therefore, the purpose of this study was to examine collegiate student-athletes’ lived experiences of an in-season concussion. Four NCAA Division I student-athletes who suffered an in-season concussion were interviewed utilizing an existential phenomenological approach to capture the lived experience of the injury. Five major themes developed from the participants’ experiences: 1) symptoms and emotional response to injury, 2) experiences of concussion testing, 3) fear of failing to meet teammate expectations, 4) support from friends and family, and 5) effect on school. These results provide documented evidence of multiple clinical concerns and anecdotal reports of student-athletes unwillingness to report concussion symptoms, potential dishonesty in reporting post-injury symptoms, negative effects on academic performance, challenges of concussion assessment, and the need to monitor student-athletes activity levels outside athletics. The results of this study can help sports medicine clinicians improve their understanding of the injured student-athlete’s perceptions following an in-season concussion

    The 8 o'clock Arc: A Serendipitous Discovery of a Strongly Lensed Lyman Break Galaxy in the SDSS DR4 Imaging Data

    Get PDF
    We report on the serendipitous discovery of the brightest Lyman Break Galaxy (LBG) currently known, a galaxy at z=2.73 that is being strongly lensed by the z=0.38 Luminous Red Galaxy (LRG) SDSS J002240.91+143110.4. The arc of this gravitational lens system, which we have dubbed the "8 o'clock arc" due to its time of discovery, was initially identified in the imaging data of the Sloan Digital Sky Survey Data Release 4 (SDSS DR4); followup observations on the Astrophysical Research Consortium (ARC) 3.5m telescope at Apache Point Observatory confirmed the lensing nature of this system and led to the identification of the arc's spectrum as that of an LBG. The arc has a spectrum and a redshift remarkably similar to those of the previous record-holder for brightest LBG (MS 1512-cB58, a.k.a "cB58"), but, with an estimated total magnitude of (g,r,i) = (20.0,19.2,19.0) and surface brightness of (mu_g,mu_r,mu_i) = (23.3, 22.5, 22.3) mag/arcsec^2, the 8 o'clock arc is thrice as bright. The 8 o'clock arc, which consists of three lensed images of the LBG, is 162deg (9.6arcsec) long and has a length-to-width ratio of 6:1. A fourth image of the LBG -- a counter-image -- can also be identified in the ARC 3.5m g-band images. A simple lens model for the system assuming a singular isothermal ellipsoid potential yields an Einstein radius of 2.91+/-0.14 arcsec, a total mass for the lensing LRG (within the (10.6+/-0.5)/h kpc enclosed by the lensed images) of 1.04x10^12/h Msun, and a magnification factor for the LBG of 12.3(+15/-3.6). The LBG itself is intrinsically quite luminous (approximately 6L*) and shows indications of massive recent star formation, perhaps as high as 160/h Msun/year.Comment: 4 pages 5 figures, submitted to ApJ Letter

    Non-alcoholic fatty liver disease: relationship with cardiovascular risk markers and clinical endpoints

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is a common diagnosis and is increasing in prevalence worldwide. NAFLD is usually asymptomatic at presentation; progression of the disease is unpredictable, leading to the development of a variety of techniques for screening, diagnosis and risk stratification. Clinical methods in current use include serum biomarker panels, hepatic ultrasound, magnetic resonance imaging, and liver biopsy. NAFLD is strongly associated with the metabolic syndrome, and the most common cause of death for people with the condition is cardiovascular disease. Whether NAFLD is an independent cardiovascular risk factor needs exploration. NAFLD has been associated with surrogate markers of cardiovascular disease such as carotid intima-media thickness, the presence of carotid plaque, brachial artery vasodilatory responsiveness and CT coronary artery calcification score. There is no effective medical treatment for NAFLD and evidence is lacking regarding the efficacy of interventions in mitigating cardiovascular risk. Health care professionals managing patients with NAFLD should tackle the issue with early identification of risk factors and aggressive modification. Current management strategies therefore comprise lifestyle change,with close attention to known cardiovascular risk factors

    Altered dynamic postural control during gait termination following concussion

    Get PDF
    Impaired postural control is a cardinal symptom following concussion. Planned gait termination (GT) is a non-novel, dynamic task that challenges postural control in individuals with neurological deficits, and it could be an impactful measure for identifying dynamic postural control impairments following concussion. Therefore, the purpose of this study was to assess acute post-concussion dynamic postural control utilizing a planned GT task. The concussion participants (n= 19, age: 19.0 ± 0.8 years, height: 177.0 ± 10.1 cm, weight: 83.3 ± 20.0 kg) completed five planned GT trials during preseason baseline testing (Baseline) and on Day 1 post-concussion (Day-1). Healthy control participants (n=19, age: 20.4 ± 1.2 years, height: 173.8 ± 8.9 cm, weight: 80.2 ± 17.6 kg) completed the same trials a week apart. The dependent variables of interest included COP displacement and velocity in the mediolateral (ML) and anteroposterior (AP) axes during the three phases (braking, transitional, stabilization) of planned GT. There were significant interactions observed in both the braking ML and transitional AP displacement (p= 0.042, p= 0.030) and velocity (p= 0.027, p= 0.030). These results suggest a conservative post-concussion motor control strategy during planned GT. Further, these results support the use of dynamic postural control tasks as measures of post-concussion impairments

    A nomenclature for echinoderm genes.

    Get PDF
    Echinoderm embryos and larvae are prominent experimental model systems for studying developmental mechanisms. High-quality, assembled, annotated genome sequences are now available for several echinoderm species, including representatives from most classes. The increased availability of these data necessitates the development of a nomenclature that assigns universally interpretable gene symbols to echinoderm genes to facilitate cross-species comparisons of gene functions, both within echinoderms and across other phyla. This paper describes the implementation of an improved set of echinoderm gene nomenclature guidelines that both communicates meaningful orthology information in protein-coding gene symbols and names and establishes continuity with nomenclatures developed for major vertebrate model organisms, including humans. Differences between the echinoderm gene nomenclature guidelines and vertebrate guidelines are examined and explained. This nomenclature incorporates novel solutions to allow for several types of orthologous relationships, including the single echinoderm genes with multiple vertebrate co-orthologs that result from whole-genome-duplication events. The current version of the Echinoderm Gene Nomenclature Guidelines can be found at https://www.echinobase.org/gene/static/geneNomenclature.jsp Database URL https://www.echinobase.org/
    corecore