303 research outputs found

    Consensus of German Transplant Centers on Hematopoietic Stem Cell Transplantation in Fanconi Anemia

    Get PDF
    Allogeneic hematopoietic stem cell transplantation (HSCT) is currently the only curative therapy for the severe hematopoietic complications associated with Fanconi anemia (FA). In Germany, it is estimated that 10–15 transplants are performed annually for FA. However, because FA is a DNA repair disorder, standard conditioning regimens confer a high risk of excessive regimen-related toxicities and mortality, and reduced intensity regimens are linked with graft failure in some FA patients. Moreover, development of graft-versus-host disease is a major contributing factor for secondary solid tumors. The relative rarity of the disorder limits HSCT experience at any single center. Consensus meetings were convened to develop a national approach for HSCT in FA. This manuscript outlines current experience and knowledge about HSCT in FA and, based on this analysis, general recommendations reached at these meetings

    IDH mutations in primary myelofibrosis predict leukemic transformation and shortened survival: clinical evidence for leukemogenic collaboration with JAK2V617F

    Get PDF
    Isocitrate dehydrogenase (IDH) mutations are frequent in blast-phase myeloproliferative neoplasms and might therefore contribute to leukemic transformation. We examined this possibility in 301 consecutive patients with chronic-phase primary myelofibrosis (PMF). The mutant IDH was detected in 12 patients (4%): 7 IDH2 (5 R140Q, 1 R140W and 1 R172G) and 5 IDH1 (3 R132S and 2 R132C). In all, 6 (50%) of the 12 IDH-mutated patients also expressed JAK2V617F. Overall, 18 (6%) patients displayed only MPL and 164 (54.3%) only JAK2 mutations. Multivariable analysis that accounted for conventional risk factors disclosed inferior overall survival (OS; P=0.03) and leukemia-free survival (LFS; P=0.003) in IDH-mutated patients: OS hazard ratio (HR) was 0.39 (95% confidence interval (95% CI) 0.2–0.75), 0.50 (95% CI 0.27–0.95) and 0.53 (95% CI 0.23–1.2) for patients with no, JAK2 or MPL mutations, respectively. Further analysis disclosed a more pronounced effect for the mutant IDH on OS and LFS in the presence (P=0.0002 and P<0.0001, respectively) as opposed to the absence (P=0.34 and P=0.64) of concomitant JAK2V617F. Analysis of paired samples obtained during chronic- and blast-phase disease revealed the presence of both IDH and JAK2 mutations at both time points. Our observations suggest that IDH mutations in PMF are independent predictors of leukemic transformation and raise the possibility of leukemogenic collaboration with JAK2V617F

    Cryptic splicing events in the iron transporter ABCB7 and other key target genes in SF3B1-mutant myelodysplastic syndromes.

    Get PDF
    The splicing factor SF3B1 is the most frequently mutated gene in myelodysplastic syndromes (MDS), and is strongly associated with the presence of ring sideroblasts (RS). We have performed a systematic analysis of cryptic splicing abnormalities from RNA sequencing data on hematopoietic stem cells (HSCs) of SF3B1-mutant MDS cases with RS. Aberrant splicing events in many downstream target genes were identified and cryptic 3' splice site usage was a frequent event in SF3B1-mutant MDS. The iron transporter ABCB7 is a well-recognized candidate gene showing marked downregulation in MDS with RS. Our analysis unveiled aberrant ABCB7 splicing, due to usage of an alternative 3' splice site in MDS patient samples, giving rise to a premature termination codon in the ABCB7 mRNA. Treatment of cultured SF3B1-mutant MDS erythroblasts and a CRISPR/Cas9-generated SF3B1-mutant cell line with the nonsense-mediated decay (NMD) inhibitor cycloheximide showed that the aberrantly spliced ABCB7 transcript is targeted by NMD. We describe cryptic splicing events in the HSCs of SF3B1-mutant MDS, and our data support a model in which NMD-induced downregulation of the iron exporter ABCB7 mRNA transcript resulting from aberrant splicing caused by mutant SF3B1 underlies the increased mitochondrial iron accumulation found in MDS patients with RS

    Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases

    Get PDF
    The ASXL1 gene is one of the most frequently mutated genes in malignant myeloid diseases. The ASXL1 protein belongs to protein complexes involved in the epigenetic regulation of gene expression. ASXL1 mutations are found in myeloproliferative neoplasms (MPN), myelodysplastic syndromes (MDS), chronic myelomonocytic leukemia (CMML) and acute myeloid leukemia (AML). They are generally associated with signs of aggressiveness and poor clinical outcome. Because of this, a systematic determination of ASXL1 mutational status in myeloid malignancies should help in prognosis assessment

    TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups

    Get PDF
    Risk stratification is critical in the care of patients with myelodysplastic syndromes (MDS). Approximately 10% have a complex karyotype (CK), defined as more than two cytogenetic abnormalities, which is a highly adverse prognostic marker. However, CK-MDS can carry a wide range of chromosomal abnormalities and somatic mutations. To refine risk stratification of CK-MDS patients, we examined data from 359 CK-MDS patients shared by the International Working Group for MDS. Mutations were underrepresented with the exception of TP53 mutations, identified in 55% of patients. TP53 mutated patients had even fewer co-mutated genes but were enriched for the del(5q) chromosomal abnormality (p 10%), abnormal 3q, abnormal 9, and monosomy 7 as having the greatest survival risk. The poor risk associated with CK-MDS is driven by its association with prognostically adverse TP53 mutations and can be refined by considering clinical and karyotype features

    ASXL2 is essential for haematopoiesis and acts as a haploinsufficient tumour suppressor in leukemia

    Get PDF
    Additional sex combs-like (ASXL) proteins are mammalian homologues of additional sex combs (Asx), a regulator of trithorax and polycomb function in Drosophila. While there has been great interest in ASXL1 due to its frequent mutation in leukemia, little is known about its paralog ASXL2, which is frequently mutated in acute myeloid leukemia patients bearing the RUNX1-RUNX1T1 (AML1-ETO) fusion. Here we report that ASXL2 is required for normal haematopoiesis with distinct, non-overlapping effects from ASXL1 and acts as a haploinsufficient tumour suppressor. While Asxl2 was required for normal haematopoietic stem cell self-renewal, Asxl2 loss promoted AML1-ETO leukemogenesis. Moreover, ASXL2 target genes strongly overlapped with those of RUNX1 and AML1-ETO and ASXL2 loss was associated with increased chromatin accessibility at putative enhancers of key leukemogenic loci. These data reveal that Asxl2 is a critical regulator of haematopoiesis and mediates transcriptional effects that promote leukemogenesis driven by AML1-ETO
    corecore