156 research outputs found

    Rhesus monkeys use geometric and non geometric during a reorientation task

    Get PDF
    Rhesus monkeys (Macaca mulata) were subjected to a place finding task in a rectangular room perfectly homogeneous and without distinctive featural information. Results of Experiment 1 show that monkeys rely on the large-scale geometry of the room to retrieve a food reward. Experiments 2 and 3 indicate that subjects use also nongeometric information (colored wall) to reorient. Data of Experiments 4 and 5 suggest that monkeys do not use small angular cues but that they are sensitive to the size of the cues (Experiments 6, 7, and 8). Our findings strengthen the idea that a mechanism based on the geometry of the environment is at work in several mammalian species. In addition, the present data offer new perspectives on spatial cognition in animals that are phylogenetically close to humans. Specifically, the joint use of both geometric and landmark-based cues by rhesus monkeys tends to demonstrate that spatial processing became more flexible with evolutio

    Reaction to spatial novelty and exploratory strategies in baboons

    Get PDF
    Exploratory activity was examined in 4 young baboons with the aim of investigating the type of spatial coding (purely geometric and/or by taking into account the identity of the object) used for the configuration of objects. Animals were individually tested in an outdoor enclosure for their exploratory reactions (contact time and order of spontaneous visits) to changes brought about to a configuration of different objects. Two kinds of spatial changes were made: a modification (1) of the shape of the configuration (by displacement of one object) and (2) of the spatial arrangement without changing the initial shape (exchanging the location of two objects). In the second experiment, the effect of a spatial modification of the global geometry constituted by four identical objects was investigated. Finally, in the third experiment, a substitution of a familiar object with a novel one was performed without changing the objects' configuration. The baboons strongly reacted to geometrical modifications of the configuration. In contrast, they were less sensitive to modifications of local features that did not affect the initial spatial configuration. Analyses of spontaneous exploratory activities revealed two types of exploratory strategies (cyclic and back-and-forth). These data are discussed in relation to (1) the distinction between the encoding of geometric versus local spatial features and (2) the spatial function of exploratory activity

    Numbers in the Blind's “Eye”

    Get PDF
    Background: Although lacking visual experience with numerosities, recent evidence shows that the blind perform similarly to sighted persons on numerical comparison or parity judgement tasks. In particular, on tasks presented in the auditory modality, the blind surprisingly show the same effect that appears in sighted persons, demonstrating that numbers are represented through a spatial code, i.e. the Spatial-Numerical Association of Response Codes (SNARC) effect. But, if this is the case, how is this numerical spatial representation processed in the brain of the blind? Principal Findings: Here we report that, although blind and sighted people have similarly organized numerical representations, the attentional shifts generated by numbers have different electrophysiological correlates (sensorial N100 in the sighted and cognitive P300 in the blind). Conclusions: These results highlight possible differences in the use of spatial representations acquired through modalities other than vision in the blind population

    Keep an eye on your hands: on the role of visual mechanisms in processing of haptic space

    Get PDF
    The present paper reviews research on a haptic orientation processing. Central is a task in which a test bar has to be set parallel to a reference bar at another location. Introducing a delay between inspecting the reference bar and setting the test bar leads to a surprising improvement. Moreover, offering visual background information also elevates performance. Interestingly, (congenitally) blind individuals do not or to a weaker extent show the improvement with time, while in parallel to this, they appear to benefit less from spatial imagery processing. Together this strongly points to an important role for visual processing mechanisms in the perception of haptic inputs

    Comparing dogs and great apes in their ability to visually track object transpositions

    Get PDF
    Knowing that objects continue to exist after disappearing from sight and tracking invisible object displacements are two basic elements of spatial cognition. The current study compares dogs and apes in an invisible transposition task. Food was hidden under one of two cups in full view of the subject. After that both cups were displaced, systematically varying two main factors, whether cups were crossed during displacement and whether the cups were substituted by the other cup or instead cups were moved to new locations. While the apes were successful in all conditions, the dogs had a strong preference to approach the location where they last saw the reward, especially if this location remained filled. In addition, dogs seem to have especial difficulties to track the reward when both containers crossed their path during displacement. These results confirm the substantial difference that exists between great apes and dogs with regard to mental representation abilities required to track the invisible displacements of objects

    Superior numerical abilities following early visual deprivation

    Get PDF
    In numerical cognition vision has been assumed to play a predominant role in the elaboration of the numerical representations and skills. However, this view has been recently challenged by the discovery that people with early visual deprivation not only have a semantic numerical representation that shares the same spatial properties with that in sighted people, but also have better numerical estimation skills. Here, we show that blind people’s superior numerical abilities can be found in different numerical contexts, whether they are familiar or more general. In particular, we found that blind participants demonstrated better numerical estimation abilities than sighted participants in both an ecologic footstep and an unfamiliar oral verbal production task. Blind participants also tend to show greater working memory skills compared to sighted participants. These findings support the notion that vision is not necessary in the development of numerical cognition and indicate that early visual deprivation may even lead to a general enhancement in numerical estimation abilities. Moreover, they further suggest that blind people’s greater numerical skills might be accounted by enhanced high-level cognitive processes, such as working memory

    Peripersonal space representation develops independently from visual experience

    Get PDF
    Our daily-life actions are typically driven by vision. When acting upon an object, we need to represent its visual features (e.g. shape, orientation, etc.) and to map them into our own peripersonal space. But what happens with people who have never had any visual experience? How can they map object features into their own peripersonal space? Do they do it differently from sighted agents? To tackle these questions, we carried out a series of behavioral experiments in sighted and congenitally blind subjects. We took advantage of a spatial alignment effect paradigm, which typically refers to a decrease of reaction times when subjects perform an action (e.g., a reach-To-grasp pantomime) congruent with that afforded by a presented object. To systematically examine peripersonal space mapping, we presented visual or auditory affording objects both within and outside subjects' reach. The results showed that sighted and congenitally blind subjects did not differ in mapping objects into their own peripersonal space. Strikingly, this mapping occurred also when objects were presented outside subjects' reach, but within the peripersonal space of another agent. This suggests that (the lack of) visual experience does not significantly affect the development of both one's own and others' peripersonal space representation

    Mouse Cognition-Related Behavior in the Open-Field: Emergence of Places of Attraction

    Get PDF
    Spatial memory is often studied in the Morris Water Maze, where the animal's spatial orientation has been shown to be mainly shaped by distal visual cues. Cognition-related behavior has also been described along “well-trodden paths”—spatial habits established by animals in the wild and in captivity reflecting a form of spatial memory. In the present study we combine the study of Open Field behavior with the study of behavior on well-trodden paths, revealing a form of locational memory that appears to correlate with spatial memory. The tracked path of the mouse is used to examine the dynamics of visiting behavior to locations. A visit is defined as either progressing through a location or stopping there, where progressing and stopping are computationally defined. We then estimate the probability of stopping at a location as a function of the number of previous visits to that location, i.e., we measure the effect of visiting history to a location on stopping in it. This can be regarded as an estimate of the familiarity of the mouse with locations. The recently wild-derived inbred strain CZECHII shows the highest effect of visiting history on stopping, C57 inbred mice show a lower effect, and DBA mice show no effect. We employ a rarely used, bottom-to-top computational approach, starting from simple kinematics of movement and gradually building our way up until we end with (emergent) locational memory. The effect of visiting history to a location on stopping in it can be regarded as an estimate of the familiarity of the mouse with locations, implying memory of these locations. We show that the magnitude of this estimate is strain-specific, implying a genetic influence. The dynamics of this process reveal that locations along the mouse's trodden path gradually become places of attraction, where the mouse stops habitually

    Spatial Language Processing in the Blind: Evidence for a Supramodal Representation and Cortical Reorganization

    Get PDF
    Neuropsychological and imaging studies have shown that the left supramarginal gyrus (SMG) is specifically involved in processing spatial terms (e.g. above, left of), which locate places and objects in the world. The current fMRI study focused on the nature and specificity of representing spatial language in the left SMG by combining behavioral and neuronal activation data in blind and sighted individuals. Data from the blind provide an elegant way to test the supramodal representation hypothesis, i.e. abstract codes representing spatial relations yielding no activation differences between blind and sighted. Indeed, the left SMG was activated during spatial language processing in both blind and sighted individuals implying a supramodal representation of spatial and other dimensional relations which does not require visual experience to develop. However, in the absence of vision functional reorganization of the visual cortex is known to take place. An important consideration with respect to our finding is the amount of functional reorganization during language processing in our blind participants. Therefore, the participants also performed a verb generation task. We observed that only in the blind occipital areas were activated during covert language generation. Additionally, in the first task there was functional reorganization observed for processing language with a high linguistic load. As the visual cortex was not specifically active for spatial contents in the first task, and no reorganization was observed in the SMG, the latter finding further supports the notion that the left SMG is the main node for a supramodal representation of verbal spatial relations
    corecore