1,469 research outputs found

    Which morphological characteristics are most influenced by the host matrix in downy mildews? : A case study in Pseudoperonospora cubensis

    Get PDF
    Before the advent of molecular phylogenetics, species concepts in the downy mildews, an economically important group of obligate biotrophic oomycete pathogens, have mostly been based upon host range and morphology. While molecular phylogenetic studies have confirmed a narrow host range for many downy mildew species, others, like Pseudoperonospora cubensis affect even different genera. Although often morphological differences were found for new, phylogenetically distinct species, uncertainty prevails regarding their host ranges, especially regarding related plants that have been reported as downy mildew hosts, but were not included in the phylogenetic studies. In these cases, the basis for deciding if the divergence in some morphological characters can be deemed sufficient for designation as separate species is uncertain, as observed morphological divergence could be due to different host matrices colonised. The broad host range of P. cubensis (ca. 60 host species) renders this pathogen an ideal model organism for the investigation of morphological variations in relation to the host matrix and to evaluate which characteristics are best indicators for conspecificity or distinctiveness. On the basis of twelve morphological characterisitcs and a set of twelve cucurbits from five different Cucurbitaceae tribes, including the two species, Cyclanthera pedata and Thladiantha dubia, hitherto not reported as hosts of P. cubensis, a significant influence of the host matrix on pathogen morphology was found. Given the high intraspecific variation of some characteristics, also their plasticity has to be taken into account. The implications for morphological species determination and the confidence limits of morphological characteristics are discussed. For species delimitations in Pseudoperonospora it is shown that the ratio of the height of the first ramification to the sporangiophore length, ratio of the longer to the shorter ultimate branchlet, and especially the length and width of sporangia, as well as, with some reservations, their ratio, are the most suitable characteristics for species delimitation

    Oomyceten – schön, nützlich und gefährlich : sie sind überall zu finden und dennoch kaum bekannt

    Get PDF
    Auf Pflanzen sind sie klein, unscheinbar und leicht verwechselbar. Den Betrachter betören sie beim Blick ins Mikroskop durch wunderschön geformte Sporenträger. Doch Oomyceten, die lange Zeit mit Pilzen verwechselt wurden, können als Pflanzenschädlinge beträchtlichen landwirtschaftlichen Schaden anrichten. Die einzelnen Arten zu unterscheiden und ihre Wirtspflanzen zu kennen, ist eine Voraussetzung dafür, ihre Verbreitung zu kontrollieren. Denn auch in Europa könnten exotische Arten aufgrund der Erderwärmung heimisch werden – mit erwünschten und unerwünschten Folgen

    Broad host range species in specialised pathogen groups should be treated with suspicion – a case study on Entyloma infecting Ranunculus

    Get PDF
    Plant pathogenic smut fungi in the broader sense can be divided into the Ustilaginomycetes, which cause classical smut symptoms with masses of blackish spores being produced in a variety of angiosperms, and the Exobasidiomycetes, which are often less conspicuous, as many do not shed large amounts of blackish spores. The leaf-spot causing members of the genus Entyloma (Entylomatales, Exobasidiomycetes) belong to the latter group. Currently, 172 species that all infect eudicots are included in the genus. Vánky (2012) recognised five Entyloma species on species of Ranunculus s.lat. Two have been reported only from Ficaria verna s.lat., while three, E. microsporum, E. ranunculi-repentis, E. verruculosum, have been reported to have a broad host range, encompassing 30, 26, and 5 species of Ranunculus, respectively. This broad host range is in contrast to the generally high host specificity assumed for species of Entyloma, indicating that they may represent complexes of specialised species. The aim of this study was to investigate Entyloma on Ranunculus s.lat. using multigene phylogenies and morphological comparisons. Phylogenetic analyses on the basis of up to four loci (ITS, atp2, ssc1, and map) showed a clustering of Entyloma specimens according to host species. For some of these Entyloma lineages, names not currently in use were available and reinstated. In addition, Entyloma microsporum s.str. is neotypified. Six novel species are described in this study, namely, Entyloma jolantae on Ranunculus oreophilus, E. klenkei on R. marginatus, E. kochmanii on R. lanuginosus, E. piepenbringiae on R. polyanthemos subsp. nemorosus (type host) and R. repens, E. savchenkoi on R. paludosus, and E. thielii on R. montanus. For all species diagnostic bases and morphological characteristics are provided. The results in this study once more highlight the importance of detailed re-investigation of broad host-range pathogens of otherwise specialised plant pathogen groups

    Biodegradable lignin nanocontainers

    No full text

    Phytopythium leanoi sp. nov. and Phytopythium dogmae sp. nov., Phytopythium species associated with mangrove leaf litter from the Philippines

    Get PDF
    The genus Phytopythium is a monophyletic taxon of the Peronosporaceae with characteristics intermediate between Phytophthora and Pythium. In the Philippines, reports of Phytopythium are scarce, with the mangrove-swamp-inhabiting species Phytopythium kandeliae being the only species recorded to date. It was the aim of the current study to investigate the diversity of Phytopythium in mangrove habitats in more detail. Based on culture characteristics, morphology, and molecular phylogenetic position, two new species of Phytopythium are described from Philippine mangroves, P. leanoi USTCMS 4102 and P. dogmae USTCMS 4101. Phytopythium leanoi is a species morphologically similar to P. kandeliae, but with the ability to develop gametangia in a homothallic fashion. The other new species, P. dogmae, is characterized by having a short discharge tube, semipapillate to papillate sporangia and frequently exhibiting a clustering of two sporangia per sporangiogenic hypha. With the addition of the two species described in this study, the genus Phytopythium has grown from around 10 to beyond 20 recognized species over the past decade, and it seems likely that several more species of this genus await discovery

    Salisapiliaceae – a new family of oomycetes from marsh grass litter of southeastern North America

    Get PDF
    Several filamentous oomycete species of the genus Halophytophthora have recently been described from marine environments, mostly from subtropical and tropical ecosystems. During a survey of oomycetes from leaf litter of Spartina alterniflora in salt marshes of southeastern Georgia, isolates of four taxa were recovered that bore similarity to some members of Halophytophthora but were highly divergent from isolates of Halophytophthora s.str. based on a combined sequence analysis of two nuclear loci. In phylogenetic analyses, these isolates were placed basal to a monophyletic group comprised of Pythium of the Pythiaceae and the Peronosporaceae. Sequence and morphology of these taxa diverged from the type species Halophytophthora vesicula, which was placed within the Peronosporaceae with maximum support. As a consequence a new family, the Salisapiliaceae, and a new genus, Salisapilia, are described to accommodate the newly discovered species, along with one species previously classified within Halophytophthora. Morphological features that separate these taxa from Halophytophthora are a smaller hyphal diameter, oospore production, lack of vesicle formation during sporulation, and a plug of hyaline material at the sporangial apex that is displaced during zoospore release. Our findings offer a first glance at the presumably much higher diversity of oomycetes in estuarine environments, of which ecological significance requires further exploration

    Ferulic acid is a putative surrender signal to stimulate programmed cell death in grapevines after infection with Neofusicoccum parvum

    Get PDF
    An apoplectic breakdown from grapevine trunk diseases (GTDs) has become a serious challenge to viticulture as a consequence of drought stress. We hypothesize that fungal aggressiveness is controlled by a chemical communication between the host and colonizing fungus. We introduce the new concept of a ‘plant surrender signal’ accumulating in host plants under stress and facilitating the aggressive behaviour of the strain Neofusicoccum parvum (Bt-67) causing Botryosphaeriaceae-related dieback in grapevines. Using a cell-based experimental system (Vitis cells) and bioactivity-guided fractionation, we identify trans-ferulic acid, a monolignol precursor, as a ‘surrender signal’. We show that this signal specifically activates the secretion of the fungal phytotoxin fusicoccin A aglycone. We show further that this phytotoxin, mediated by 14-3-3 proteins, activates programmed cell death in Vitis cells. We arrive at a model showing a chemical communication facilitating fusicoccin A secretion that drives necrotrophic behaviour during Botryosphaeriaceae–Vitis interaction through trans-ferulic acid. We thus hypothesize that channelling the phenylpropanoid pathway from this lignin precursor to the trans-resveratrol phytoalexin could be a target for future therapy

    A glimpse into the biogeography, seasonality, and ecological functions of arctic marine Oomycota

    Get PDF
    Source at https://doi.org/10.1186/s43008-019-0006-6. © The Author(s). 2019High-latitude environments are warming, leading to changes in biological diversity patterns of taxa. Oomycota are a group of fungal-like organisms that comprise a major clade of eukaryotic life and are parasites of fish, agricultural crops, and algae. The diversity, functionality, and distribution of these organisms are essentially unknown in the Arctic marine environment. Thus, it was our aim to conduct a first screening, using a functional gene assay and high-throughput sequencing of two gene regions within the 18S rRNA locus to examine the diversity, richness, and phylogeny of marine Oomycota within Arctic sediment, seawater, and sea ice. We detected Oomycota at every site sampled and identified regionally localized taxa, as well as taxa that existed in both Alaska and Svalbard. While the recently described diatom parasite Miracula helgolandica made up about 50% of the oomycete reads found, many lineages were observed that could not be assigned to known species, including several that clustered with another recently described diatom parasite, Olpidiopsis drebesii. Across the Arctic, Oomycota comprised a maximum of 6% of the entire eukaryotic microbial community in Barrow, Alaska May sediment and 10% in sea ice near the Svalbard archipelago. We found Arctic marine Oomycota encode numerous genes involved in parasitism and carbon cycling processes. Ultimately, these data suggest that Arctic marine Oomycota are a reservoir of uncharacterized biodiversity, the majority of which are probably parasites of diatoms, while others might cryptically cycle carbon or interface other unknown ecological processes. As the Arctic continues to warm, lower-latitude Oomycota might migrate into the Arctic Ocean and parasitize non-coevolved hosts, leading to incalculable shifts in the primary producer community

    The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine

    Get PDF
    Phytophthora infestans, the cause of potato late blight, is infamous for having triggered the Irish Great Famine in the 1840s. Until the late 1970s, P. infestans diversity outside of its Mexican center of origin was low, and one scenario held that a single strain, US-1, had dominated the global population for 150 years; this was later challenged based on DNA analysis of historical herbarium specimens. We have compared the genomes of 11 herbarium and 15 modern strains. We conclude that the nineteenth century epidemic was caused by a unique genotype, HERB-1, that persisted for over 50 years. HERB-1 is distinct from all examined modern strains, but it is a close relative of US-1, which replaced it outside of Mexico in the twentieth century. We propose that HERB-1 and US-1 emerged from a metapopulation that was established in the early 1800s outside of the species' center of diversity.Comment: To be published in eLIF
    • …
    corecore