57 research outputs found

    Different paths to the modern state in Europe: the interaction between domestic political economy and interstate competition

    Get PDF
    Theoretical work on state formation and capacity has focused mostly on early modern Europe and on the experience of western European states during this period. While a number of European states monopolized domestic tax collection and achieved gains in state capacity during the early modern era, for others revenues stagnated or even declined, and these variations motivated alternative hypotheses for determinants of fiscal and state capacity. In this study we test the basic hypotheses in the existing literature making use of the large date set we have compiled for all of the leading states across the continent. We find strong empirical support for two prevailing threads in the literature, arguing respectively that interstate wars and changes in economic structure towards an urbanized economy had positive fiscal impact. Regarding the main point of contention in the theoretical literature, whether it was representative or authoritarian political regimes that facilitated the gains in fiscal capacity, we do not find conclusive evidence that one performed better than the other. Instead, the empirical evidence we have gathered lends supports to the hypothesis that when under pressure of war, the fiscal performance of representative regimes was better in the more urbanized-commercial economies and the fiscal performance of authoritarian regimes was better in rural-agrarian economie

    Different Paths to the Modern State in Europe: The Interaction between Domestic Political Economy and Interstate Competition

    Full text link

    IMPACT-Global Hip Fracture Audit: Nosocomial infection, risk prediction and prognostication, minimum reporting standards and global collaborative audit. Lessons from an international multicentre study of 7,090 patients conducted in 14 nations during the COVID-19 pandemic

    Get PDF

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Alzheimer's Association Research Roundtable Meeting on Mild Cognitive Impairment: What have we learned?

    No full text
    The biological changes that occur in the brains of Alzheimer's disease (AD) patients are thought to begin long before the onset of clinical symptoms. Although current therapeutic agents have been approved only for patients with mild to moderate AD, Alzheimer-type pathology in patients with mild to moderate AD is already quite advanced. One impetus for the development of the concept of mild cognitive impairment (MCI) was the attempt to recognize AD early in its clinical expression and to determine whether it is possible through therapeutic interventions to improve the memory impairment at this stage or delay further progression to dementia. To this end, several clinical trials have been conducted in patients with MCI. On September 8 and 9, 2004 a meeting of the Alzheimer's Association Research Roundtable was held at which experts in the field of MCI convened to review the collective experience from these trials and to consider potential approaches that might improve MCI clinical trials in the future. This article summarizes the presentations and discussions of that meeting

    Scheduling of Synchronous Dataflow Graphs with Partially Periodic Real-Time Constraints

    No full text
    International audienceModern Cyber-Physical Systems (CPSs) are composed of numerous components, some of which require real-time management: for example, management of sensors and actuators requires periodic deadlines while processing parts do not. We refer to these systems as partially periodic. In a partially periodic system, precedence constraints may exist between periodic and aperiodic components. It is notably the case in CPSs where sensors measuring physical variables at a fixed sampling rate are typically feeding data to one or more processing part. A critical challenge for any real-time CPS software is its scheduling on an embedded computing platform. The increasing number of cores in such platforms (as Kalray MPPA Bostan having 288 cores) makes offline non-preemptive scheduling techniques efficient to respect real-time constraints, but requires new analysis and synthesis algorithms. In this paper, we study the schedulability of partially periodic systems modeled as Synchronous Data Flow (SDF) graphs. Our contributions are a few necessary conditions on any live SDF graph, and a linearithmic offline non-preemptive scheduling algorithm on vertices of any directed acyclic task graph. The presented algorithm has been evaluated on a set of randomly generated SDF graphs and on one real use-case. Experiments show that our proposed non-preemptive scheduling algorithm allocates thousands of tasks in less than a second. In the last experiment, the computed schedules achieve a throughput close to that one obtained with global Earliest Deadline First (EDF) scheduling
    corecore