7 research outputs found
Analyzing sensory data with R
Quantitative Descriptive Approaches When panelists rate products according to one single list of attributes Data, sensory issues, notations In practice For experienced users: Measuring the impact of the experimental design on the perception of the products? When products are rated according to one single list of attributesData, sensory issues, notations In practice For experienced users: Adding supplementary information to the product space When products are rated according to several list
The complete genome of Blastobotrys (Arxula) adeninivorans LS3 - a yeast of biotechnological interest.
Background: The industrially important yeast Blastobotrys (Arxula) adeninivorans is an asexual hemiascomycete phylogenetically very distant from Saccharomyces cerevisiae. Its unusual metabolic flexibility allows it to use a wide range of carbon and nitrogen sources, while being thermotolerant, xerotolerant and osmotolerant./nResults: The sequencing of strain LS3 revealed that the nuclear genome of A. adeninivorans is 11.8 Mb long and consists of four chromosomes with regional centromeres. Its closest sequenced relative is Yarrowia lipolytica, although mean conservation of orthologs is low. With 914 introns within 6116 genes, A. adeninivorans is one of the most intron-rich hemiascomycetes sequenced to date. Several large species-specific families appear to result from multiple rounds of segmental duplications of tandem gene arrays, a novel mechanism not yet described in yeasts. An analysis of the genome and its transcriptome revealed enzymes with biotechnological potential, such as two extracellular tannases (Atan1p and Atan2p) of the tannic-acid catabolic route, and a new pathway for the assimilation of n-butanol via butyric aldehyde and butyric acid. Conclusions: The high-quality genome of this species that diverged early in Saccharomycotina will allow further fundamental studies on comparative genomics, evolution and phylogenetics. Protein components of different pathways for carbon and nitrogen source utilization were identified, which so far has remained unexplored in yeast, offering clues for further biotechnological developments. In the course of identifying alternative microorganisms for biotechnological interest, A. adeninivorans has already proved its strengthened competitiveness as a promising cell factory for many more applications.This work was supported in part by funding from the Consortium National de Recherche en Génomique (CNRG) to Génoscope, from CNRS (GDR 2354, Génolevures), ANR (ANR-05-BLAN-0331, GENARISE). The computing framework was supported by the funding of the University of Bordeaux 1, the Aquitaine Région in the program “Génotypage et Génomique Comparée”, the ACI IMPBIO “Génolevures En Ligne” and INRIA. We thank the System and Network Administration team in LaBRI for excellent help and advice. J.A.C. is supported by the PhD Program in Computational Biology of the Instituto Gulbenkian de Ciência, Portugal (sponsored by Fundação Calouste Gulbenkian, Siemens SA, and Fundação para a Ciência e Tecnologia; SFRH/BD/33528/2008). M.C. research was supported by a grant of the Deutscher Akademischer Austauschdienst (DAAD). T.G. research was partly supported by a grant from the Spanish Ministry of Economy and Competitiveness (BIO2012-37161). B.D. is a member of Institut Universitaire de Franc