64 research outputs found

    The Flagellar Arginine Kinase in Trypanosoma brucei Is Important for Infection in Tsetse Flies

    Get PDF
    African trypanosomes are flagellated parasites that cause sleeping sickness. Parasites are transmitted from one mammalian host to another by the bite of a tsetse fly. Trypanosoma brucei possesses three different genes for arginine kinase (AK) including one (AK3) that encodes a protein localised to the flagellum. AK3 is characterised by the presence of a unique amino-terminal insertion that specifies flagellar targeting. We show here a phylogenetic analysis revealing that flagellar AK arose in two independent duplication events in T. brucei and T. congolense, the two species of African trypanosomes that infect the tsetse midgut. In T. brucei, AK3 is detected in all stages of parasite development in the fly (in the midgut and in the salivary glands) as well as in bloodstream cells, but with predominance at insect stages. Genetic knockout leads to a slight reduction in motility and impairs parasite infectivity towards tsetse flies in single and competition experiments, both phenotypes being reverted upon expression of an epitope-tagged version of AK3. We speculate that this flagellar arginine kinase is important for T. brucei infection of tsetse, especially in the context of mixed infections and that its flagellar targeting relies on a system equivalent to that discovered for calflagins, a family of trypanosome flagellum calcium binding proteins

    Bidirectional intraflagellar transport is restricted to two sets of microtubule doublets in the trypanosome flagellum

    Get PDF
    Intraflagellar transport (IFT) is the rapid bidirectional movement of large protein complexes driven by kinesin and dynein motors along microtubule doublets of cilia and flagella. In this study, we used a combination of high-resolution electron and light microscopy to investigate how and where these IFT trains move within the flagellum of the protist Trypanosoma brucei. Focused ion beam scanning electron microscopy (FIB-SEM) analysis of trypanosomes showed that trains are found almost exclusively along two sets of doublets (3–4 and 7–8) and distribute in two categories according to their length. High-resolution live imaging of cells expressing mNeonGreen::IFT81 or GFP::IFT52 revealed for the first time IFT trafficking on two parallel lines within the flagellum. Anterograde and retrograde IFT occurs on each of these lines. At the distal end, a large individual anterograde IFT train is converted in several smaller retrograde trains in the space of 3–4 s while remaining on the same side of the axoneme

    Cyclosporin A Treatment of Leishmania donovani Reveals Stage-Specific Functions of Cyclophilins in Parasite Proliferation and Viability

    Get PDF
    BACKGROUND: Cyclosporin A (CsA) has important anti-microbial activity against parasites of the genus Leishmania, suggesting CsA-binding cyclophilins (CyPs) as potential drug targets. However, no information is available on the genetic diversity of this important protein family, and the mechanisms underlying the cytotoxic effects of CsA on intracellular amastigotes are only poorly understood. Here, we performed a first genome-wide analysis of Leishmania CyPs and investigated the effects of CsA on host-free L. donovani amastigotes in order to elucidate the relevance of these parasite proteins for drug development. METHODOLOGY/PRINCIPAL FINDINGS: Multiple sequence alignment and cluster analysis identified 17 Leishmania CyPs with significant sequence differences to human CyPs, but with highly conserved functional residues implicated in PPIase function and CsA binding. CsA treatment of promastigotes resulted in a dose-dependent inhibition of cell growth with an IC50 between 15 and 20 µM as demonstrated by proliferation assay and cell cycle analysis. Scanning electron microscopy revealed striking morphological changes in CsA treated promastigotes reminiscent to developing amastigotes, suggesting a role for parasite CyPs in Leishmania differentiation. In contrast to promastigotes, CsA was highly toxic to amastigotes with an IC50 between 5 and 10 µM, revealing for the first time a direct lethal effect of CsA on the pathogenic mammalian stage linked to parasite thermotolerance, independent from host CyPs. Structural modeling, enrichment of CsA-binding proteins from parasite extracts by FPLC, and PPIase activity assays revealed direct interaction of the inhibitor with LmaCyP40, a bifunctional cyclophilin with potential co-chaperone function. CONCLUSIONS/SIGNIFICANCE: The evolutionary expansion of the Leishmania CyP protein family and the toxicity of CsA on host-free amastigotes suggest important roles of PPIases in parasite biology and implicate Leishmania CyPs in key processes relevant for parasite proliferation and viability. The requirement of Leishmania CyP functions for intracellular parasite survival and their substantial divergence form host CyPs defines these proteins as prime drug targets

    Basal Body Positioning Is Controlled by Flagellum Formation in Trypanosoma brucei

    Get PDF
    To perform their multiple functions, cilia and flagella are precisely positioned at the cell surface by mechanisms that remain poorly understood. The protist Trypanosoma brucei possesses a single flagellum that adheres to the cell body where a specific cytoskeletal structure is localised, the flagellum attachment zone (FAZ). Trypanosomes build a new flagellum whose distal tip is connected to the side of the old flagellum by a discrete structure, the flagella connector. During this process, the basal body of the new flagellum migrates towards the posterior end of the cell. We show that separate inhibition of flagellum assembly, base-to-tip motility or flagella connection leads to reduced basal body migration, demonstrating that the flagellum contributes to its own positioning. We propose a model where pressure applied by movements of the growing new flagellum on the flagella connector leads to a reacting force that in turn contributes to migration of the basal body at the proximal end of the flagellum

    Serine protease inhibitors in ticks: an overview of their role in tick biology and tick-borne pathogen transmission

    No full text
    New tick and tick-borne pathogen control approaches that are both environmentally sustainable and which provide broad protection are urgently needed. Their development, however, will rely on a greater understanding of tick biology, tick-pathogen, and tick-host interactions. The recent advances in new generation technologies to study genomes, transcriptomes, and proteomes has resulted in a plethora of tick biomacromolecular studies. Among these, many enzyme inhibitors have been described, notably serine protease inhibitors (SPIs),whose importance in various tick biological processes is only just beginning to be fully appreciated. Among the multiple active substances secreted during tick feeding, SPIs have been shown to be directly involved in regulation of inflammation, blood clotting, wound healing, vasoconstriction and the modulation of host defense mechanisms. In light of these activities, several SPIs were examined and were experimentally confirmed to facilitate tick pathogen transmission. In addition, to prevent coagulation of the ingested blood meal within the tick alimentary canal, SPIs are also involved in blood digestion and nutrient extraction from the meal. The presence of SPIs in tick hemocytes and their involvement in tick innate immune defenses have also been demonstrated, as well as their implication in hemolymph coagulation and egg development. Considering the involvement of SPIs in multiple crucial aspects of tick-host-pathogen interactions, as well as in various aspects of the tick parasitic lifestyle, these molecules represent highly suitable and attractive targets for the development of effective tick control strategies. Here we review the current knowledge regarding this class of inhibitors in tick biology and tick-borne pathogen transmission, and their potential as targets for future tick control trials

    De l’importance des organismes modèles pour l’étude des cils et des flagelles

    No full text
    International audienceCilia and flagella are ubiquitous organelles that protrude from the surfaces of many cells, and whose architecture is highly conserved from protists to humans. These complex organelles, composed of over 500 proteins, can be either immotile or motile. They are involved in a myriad of biological processes, including sensing (non-motile cilia) and/or cell motility or movement of extracellular fluids (motile cilia). The ever-expanding list of human diseases linked to defective cilia illustrates the functional importance of cilia and flagella. These ciliopathies are characterised by an impressive diversity of symptoms and an often complex genetic etiology. A precise knowledge of cilia and flagella biology is thus critical to better understand these pathologies. However, multi-ciliated cells are terminally differentiated and difficult to manipulate, and a primary cilium is assembled only when the cell exits from the cell cycle. In this context the use of model organisms, that relies on the high degree of structural but also of molecular conservation of these organelles across evolution, is instrumental to decipher the many facets of cilia and flagella biology. In this review, we highlight the specific strengths of the main model organisms to investigate the molecular composition, mode of assembly, sensing and motility mechanisms and functions of cilia and flagella. Pioneering studies carried out in the green alga Chlamydomonas established the link between cilia and several genetic diseases. Moreover, multicellular organisms such as mouse, zebrafish, Xenopus, C. elegans or Drosophila, and protists like Paramecium, Tetrahymena and Trypanosoma or Leishmania each bring specific advantages to the study of cilium biology. For example, the function of genes involved in primary ciliary dyskinesia (due to defects in ciliary motility) can be efficiently assessed in trypanosomes.La plupart des cellules de mammifères ont la capacité d’assembler un ou plusieurs cils au cours du cycle cellulaire. Les cils immobiles, dont les cils primaires, participent à de nombreux processus sensoriels, alors que les cils mobiles sont essentiellement impliqués dans le déplacement cellulaire et la mise en mouvement de fluides extracellulaires. La longue liste de maladies dues à des défauts ciliaires met en exergue l’importance fonctionnelle de ces structures. Ces ciliopathies sont caractérisées par une impressionnante diversité de symptômes, et une étiologie génétique souvent complexe. La connaissance précise de la biologie des cils et flagelles s’avère donc essentielle pour la compréhension de ces maladies. Ces organites sont remarquablement conservés au cours de l’évolution eucaryote. Dans cette revue, nous illustrons l’importance de l’utilisation d’organismes modèles appropriés pour l’étude de divers aspects de la biologie des cils et flagelles : composition moléculaire, mode d’assemblage, mais aussi fonctions sensorielles et de motilité. Des études pionnières menées sur l’algue verte Chlamydomonas ont établi le lien entre les cils et certaines maladies génétiques. De plus, des organismes multicellulaires tels la souris, le poisson zèbre, le xénope, le nématode C. elegans ou la drosophile, ainsi que des protistes comme Paramecium, Tetrahymena et Trypanosoma ou Leishmania offrent chacun des atouts spécifiques pour l’étude de la biologie du cil. En particulier, des études fonctionnelles menées chez le trypanosome ont permis de caractériser la fonction de gènes impliqués dans les dyskinésies ciliaires primitives, une ciliopathie due à un défaut de mobilité des cils

    1001 model organisms to study cilia and flagella

    No full text
    International audienceMost mammalian cell types have the potential to assemble at least one cilium. Immotile cilia participate in numerous sensing processes, while motile cilia are involved in cell motility and movement of extracellular fluid. The functional importance of cilia and flagella is highlighted by the growing list of diseases due to cilia defects. These ciliopathies are marked by an amazing diversity of clinical manifestations and an often complex genetic aetiology. To understand these pathologies, a precise comprehension of the biology of cilia and flagella is required. These organelles are remarkably well conserved throughout eukaryotic evolution. In this review, we describe the strengths of various model organisms to decipher diverse aspects of cilia and flagella biology: molecular composition, mode of assembly, sensing and motility mechanisms and functions. Pioneering studies carried out in the green alga Chlamydomonas established the link between cilia and several genetic diseases. Moreover, multicellular organisms such as mouse, zebrafish, Xenopus, Caenorhabditis elegans or Drosophila, and protists such as Paramecium, Tetrahymena and Trypanosoma or Leishmania each bring specific advantages to the study of cilium biology. For example, the function of genes involved in primary ciliary dyskinesia (due to defects in ciliary motility) can be efficiently assessed in trypanosomes

    Serine Protease Inhibitors in Ticks: An Overview of Their Role in Tick Biology and Tick-Borne Pathogen Transmission

    No full text
    International audienceNew tick and tick-borne pathogen control approaches that are both environmentally sustainable and which provide broad protection are urgently needed. Their development, however, will rely on a greater understanding of tick biology, tick-pathogen, and tick-host interactions. The recent advances in new generation technologies to study genomes, transcriptomes, and proteomes has resulted in a plethora of tick biomacromolecular studies. Among these, many enzyme inhibitors have been described, notably serine protease inhibitors (SPIs), whose importance in various tick biological processes is only just beginning to be fully appreciated. Among the multiple active substances secreted during tick feeding, SPIs have been shown to be directly involved in regulation of inflammation, blood clotting, wound healing, vasoconstriction and the modulation of host defense mechanisms. In light of these activities, several SPIs were examined and were experimentally confirmed to facilitate tick pathogen transmission. In addition, to prevent coagulation of the ingested blood meal within the tick alimentary canal, SPIs are also involved in blood digestion and nutrient extraction from the meal. The presence of SPIs in tick hemocytes and their involvement in tick innate immune defenses have also been demonstrated, as well as their implication in hemolymph coagulation and egg development. Considering the involvement of SPIs in multiple crucial aspects of tick-host-pathogen interactions, as well as in various aspects of the tick parasitic lifestyle, these molecules represent highly suitable and attractive targets for the development of effective tick control strategies. Here we review the current knowledge regarding this class of inhibitors in tick biology and tick-borne pathogen transmission, and their potential as targets for future tick control trials

    The role of G proteins in the control of intraflagellar transport

    Get PDF
    International audienceIntraflagellar transport (IFT) is a mechanism used for formation of cilia and flagella in eukaryotes and little is known about its regulation. We propose that a RAB-like protein termed RABL4 (IFT27), which is associated with IFT complexes could be involved in IFT regulation. Indeed, since small GTPases are known for being key regulators of many trafficking processes. We used different approaches in order to determine the role of RABL4 during flagellum formation in Trypanosoma brucei. First, GFP::RABL4 experiments showed that the protein is localized in the cell body, at the basal body and within the flagellum, like all IFT proteins studied so far in trypanosomes. Bi-directional movement of GFP fusion protein was observed in the flagellum. RABL4 silencing demonstrated an essential role in flagellum assembly and revealed a mixture of phenotypes. Some cells do not assemble a flagellum, whereas others produce short flagella filled with material looking like IFT complexes. The structure of these short flagella is severely affected, with disrupted microtubule doublets, mislocalisation of the central pair and impaired PFR (an extra-axonemal structure) construction. The latter one can be excessively large, with numerous layers that affect the shape of the flagellum membrane. We propose that RABL4 could participate to the loading of flagellar precursors into IFT complexes for transport and we are currently analyzing GDP or GTP locked versions of the protein to challenge this hypothesis
    corecore