47 research outputs found

    Collisions of particles in locally AdS spacetimes I. Local description and global examples

    Get PDF
    We investigate 3-dimensional globally hyperbolic AdS manifolds containing "particles", i.e., cone singularities along a graph Γ\Gamma. We impose physically relevant conditions on the cone singularities, e.g. positivity of mass (angle less than 2π2\pi on time-like singular segments). We construct examples of such manifolds, describe the cone singularities that can arise and the way they can interact (the local geometry near the vertices of Γ\Gamma). We then adapt to this setting some notions like global hyperbolicity which are natural for Lorentz manifolds, and construct some examples of globally hyperbolic AdS manifolds with interacting particles.Comment: This is a rewritten version of the first part of arxiv:0905.1823. That preprint was too long and contained two types of results, so we sliced it in two. This is the first part. Some sections have been completely rewritten so as to be more readable, at the cost of slightly less general statements. Others parts have been notably improved to increase readabilit

    On the infrared scaling solution of SU(N) Yang-Mills theories in the maximally Abelian gauge

    Full text link
    An improved method for extracting infrared exponents from functional equations is presented. The generalizations introduced allow for an analysis of quite complicated systems such as Yang-Mills theory in the maximally Abelian gauge. Assuming the absence of cancellations in the appropriately renormalized integrals the only consistent scaling solution yields an infrared enhanced diagonal gluon propagator in support of the Abelian dominance hypothesis. This is explicitly shown for SU(2) and subsequently verified for SU(N), where additional interactions exist. We also derive the most infrared divergent scaling solution possible for vertex functions in terms of the propagators' infrared exponents. We provide general conditions for the existence of a scaling solution for a given system and comment on the cases of linear covariant gauges and ghost anti-ghost symmetric gauges.Comment: 23 pages, 10 figures; version coincides with version published in EPJ

    Phosphorothioate antisense oligonucleotides induce the formation of nuclear bodies

    Get PDF
    Antisense oligonucleotides are powerful tools for the in vivo regulation of gene expression. We have characterized the intracellular distribution of fluorescently tagged phosphorothioate oligodeoxynucleotides (PS-ONs) at high resolution under conditions in which PS-ONs have the potential to display antisense activity. Under these conditions PS-ONs predominantly localized to the cell nucleus where they accumulated in 20-30 bright spherical foci designated phosphorothioate bodies (PS bodies), which were set against a diffuse nucleoplasmic population excluding nucleoli. PS bodies are nuclear structures that formed in cells after PS-ON delivery by transfection agents or microinjection but were observed irrespectively of antisense activity or sequence. Ultrastructurally, PS bodies corresponded to electron-dense structures of 150-300 nm diameter and resembled nuclear bodies that were found with lower frequency in cells lacking PS-ONs. The environment of a living cell was required for the de novo formation of PS bodies, which occurred within minutes after the introduction of PS-ONs. PS bodies were stable entities that underwent noticeable reorganization only during mitosis. Upon exit from mitosis, PS bodies were assembled de novo from diffuse PS-ON pools in the daughter nuclei. In situ fractionation demonstrated an association of PS-ONs with the nuclear matrix. Taken together, our data provide evidence for the formation of a nuclear body in cells after introduction of phosphorothioate oligodeoxynucleotides

    The Gaia-ESO Survey: Homogenisation of stellar parameters and elemental abundances

    Get PDF
    The Gaia-ESO Survey is a public spectroscopic survey that targeted ≳105 stars covering all major components of the Milky Way from the end of 2011 to 2018, delivering its final public release in May 2022. Unlike other spectroscopic surveys, Gaia-ESO is the only survey that observed stars across all spectral types with dedicated, specialised analyses: from O (Teff ~ 30 000–52 000 K) all the way to K-M (≳3500 K). The physics throughout these stellar regimes varies significantly, which has previously prohibited any detailed comparisons between stars of significantly different types. In the final data release (internal data release 6) of the Gaia-ESO Survey, we provide the final database containing a large number of products, such as radial velocities, stellar parameters and elemental abundances, rotational velocity, and also, for example, activity and accretion indicators in young stars and membership probability in star clusters for more than 114 000 stars. The spectral analysis is coordinated by a number of working groups (WGs) within the survey, each specialised in one or more of the various stellar samples. Common targets are analysed across WGs to allow for comparisons (and calibrations) amongst instrumental setups and spectral types. Here we describe the procedures employed to ensure all survey results are placed on a common scale in order to arrive at a single set of recommended results for use by all survey collaborators. We also present some general quality and consistency checks performed on the entirety of the survey results.This work was partly supported by the European Union FP7 programme through ERC grant number 320360 and by the Leverhulme Trust through grant RPG-2012-541. We acknowledge the support from INAF and Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) in the form of the grant “Premiale VLT 2012”. L. Magrini and M. Van der Swaelmen acknowledge support by the WEAVE Italian consortium, and by the INAF Grant “Checs”. A.J. Korn acknowledges support by the Swedish National Space Agency (SNSA). A. Lobel acknowledges support in part by the Belgian Federal Science Policy Office under contract no. BR/143/A2/BRASS and by the European Union Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie grant Agreement No. 823734. D.K. Feuillet was partly supported by grant no. 2016-03412 from the Swedish Research Council. D. Montes acknowledges financial support from the Agencia Estatal de Investigacion of the Ministerio de Ciencia, Innovation through project PID2019-109522GB-C54 /AEI/10.13039/501100011033. E. Marfil acknowledges financial support from the European Regional Development Fund (ERDF) and the Gobierno de Canarias through project ProID2021010128. J.I. Gonzalez Hernandez acknowledges financial support from the Spanish Ministry of Science and Innovation (MICINN) project PID2020-117493GB-I00. M. Bergemann is supported through the Lise Meitner grant from the Max Planck Society and acknowledges support by the Collaborative Research centre SFB 881 (projects A5, A10), Heidelberg University, of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation). This project has received funding from the European Research Council (ERC) under the European Union, Horizon 2020 research and innovation programme (Grant agreement No. 949173). P. Jofré acknowledges financial support of FONDECYT Regular 1200703 as well as Nucleo Mile-nio ERIS NCN2021_017. R. Smiljanic acknowledges support from the National Science Centre, Poland (2014/15/B/ST/03981). S.R. Berlanas acknowledges support by MCIN/AEI/10.13039/501100011033 (contract FJC 2020-045785-I) and NextGeneration EU/PRTR and MIU (UNI/551/2021) through grant Margarita Salas-ULL. T. Bensby acknowledges financial support by grant No. 2018-04857 from the Swedish Research Council. T. Merle is supported by a grant from the Foundation ULB. T. Morel are grateful to Belgian F.R.S.-FNRS for support, and are also indebted for an ESA/PRODEX Belspo contract related to the Gaia Data Processing and Analysis Consortium and for support through an ARC grant for Concerted Research Actions financed by the Federation Wallonie-Brussels. W. Santos acknowledges FAPERJ for a Ph.D. fellowship. H.M. Tabernero acknowledges financial support from the Agencia Estatal de Investigation of the Ministerio de Ciencia, Innovation through project PID2019-109522GB-C51/AEI/10.13039/501100011033

    Genome-Wide Joint Meta-Analysis of SNP and SNP-by-Smoking Interaction Identifies Novel Loci for Pulmonary Function

    Get PDF

    Targeted delivery of antisense oligonucleotides by molecular conjugates

    Full text link
    Antisense oligonucleotides efficiently inhibit gene expression in vitro; however, the successful therapeutic application of this technology in vivo will require the development of improved delivery systems. In this report we describe a technique that efficiently delivers antisense oligonucleotides into cells using molecular conjugates. This technique, which was initially developed for the delivery of eukaryotic genes, is based on the construction of DNA-protein complexes that are recognized by the liver-specific asialoglycoprotein receptor. Binding of poly( l -lysine)-asialoorosomucoid (AsOR) protein conjugates with phosphorothioate antisense oligonucleotides to chloramphenicol acetyltransferase (CAT) led to the formation of 50- to 150-nm toroids. Exposure of the antisense molecular complexes (3 µM oligonucleotide) to NIH 3T3 cells genetically modified to express both the AsOR receptor and CAT, inhibited CAT expression by 54%, which was completely blocked by excess AsOR. Equivalent inhibition of CAT activity with purified oligonucleotide alone was observed at a 30 µM concentration. Furthermore, examination of the cells using indirect immunofluorescence for the presence of CAT protein showed 28% of cells exposed to the molecular conjugates lacked any detectable CAT enzyme. Cells exposed to oligonucleotide alone showed a highly variable staining pattern, and only a few of the cells were completely void of CAT protein. Together these data demonstrate that molecular conjugates provide a highly specific and efficient system for the delivery of antisense oligonucleotides.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45543/1/11188_2005_Article_BF01232652.pd

    The Gaia-ESO Public Spectroscopic Survey: Motivation, implementation, GIRAFFE data processing, analysis, and final data products

    Get PDF
    Context. The Gaia-ESO Public Spectroscopic Survey is an ambitious project designed to obtain astrophysical parameters and elemental abundances for 100 000 stars, including large representative samples of the stellar populations in the Galaxy, and a well-defined sample of 60 (plus 20 archive) open clusters. We provide internally consistent results calibrated on benchmark stars and star clusters, extending across a very wide range of abundances and ages. This provides a legacy data set of intrinsic value, and equally a large wide-ranging dataset that is of value for the homogenisation of other and future stellar surveys and Gaia's astrophysical parameters. Aims. This article provides an overview of the survey methodology, the scientific aims, and the implementation, including a description of the data processing for the GIRAFFE spectra. A companion paper introduces the survey results. Methods. Gaia-ESO aspires to quantify both random and systematic contributions to measurement uncertainties. Thus, all available spectroscopic analysis techniques are utilised, each spectrum being analysed by up to several different analysis pipelines, with considerable effort being made to homogenise and calibrate the resulting parameters. We describe here the sequence of activities up to delivery of processed data products to the ESO Science Archive Facility for open use. Results. The Gaia-ESO Survey obtained 202 000 spectra of 115 000 stars using 340 allocated VLT nights between December 2011 and January 2018 from GIRAFFE and UVES. Conclusions. The full consistently reduced final data set of spectra was released through the ESO Science Archive Facility in late 2020, with the full astrophysical parameters sets following in 2022. A companion article reviews the survey implementation, scientific highlights, the open cluster survey, and data products

    The Gaia-ESO Public Spectroscopic Survey: Implementation, data products, open cluster survey, science, and legacy

    Get PDF
    Context. In the last 15 years different ground-based spectroscopic surveys have been started (and completed) with the general aim of delivering stellar parameters and elemental abundances for large samples of Galactic stars, complementing Gaia astrometry. Among those surveys, the Gaia-ESO Public Spectroscopic Survey, the only one performed on a 8m class telescope, was designed to target 100 000 stars using FLAMES on the ESO VLT (both Giraffe and UVES spectrographs), covering all the Milky Way populations, with a special focus on open star clusters. Aims. This article provides an overview of the survey implementation (observations, data quality, analysis and its success, data products, and releases), of the open cluster survey, of the science results and potential, and of the survey legacy. A companion article reviews the overall survey motivation, strategy, Giraffe pipeline data reduction, organisation, and workflow. Methods. We made use of the information recorded and archived in the observing blocks; during the observing runs; in a number of relevant documents; in the spectra and master catalogue of spectra; in the parameters delivered by the analysis nodes and the working groups; in the final catalogue; and in the science papers. Based on these sources, we critically analyse and discuss the output and products of the Survey, including science highlights. We also determined the average metallicities of the open clusters observed as science targets and of a sample of clusters whose spectra were retrieved from the ESO archive. Results. The Gaia-ESO Survey has determined homogeneous good-quality radial velocities and stellar parameters for a large fraction of its more than 110 000 unique target stars. Elemental abundances were derived for up to 31 elements for targets observed with UVES. Lithium abundances are delivered for about 1/3 of the sample. The analysis and homogenisation strategies have proven to be successful; several science topics have been addressed by the Gaia-ESO consortium and the community, with many highlight results achieved. Conclusions. The final catalogue will be released through the ESO archive in the first half of 2022, including the complete set of advanced data products. In addition to these results, the Gaia-ESO Survey will leave a very important legacy, for several aspects and for many years to come

    Constraints on the structure and seasonal variations of Triton's atmosphere from the 5 October 2017 stellar occultation and previous observations

    Get PDF
    Context. A stellar occultation by Neptune's main satellite, Triton, was observed on 5 October 2017 from Europe, North Africa, and the USA. We derived 90 light curves from this event, 42 of which yielded a central flash detection. Aims. We aimed at constraining Triton's atmospheric structure and the seasonal variations of its atmospheric pressure since the Voyager 2 epoch (1989). We also derived the shape of the lower atmosphere from central flash analysis. Methods. We used Abel inversions and direct ray-tracing code to provide the density, pressure, and temperature profiles in the altitude range similar to 8 km to similar to 190 km, corresponding to pressure levels from 9 mu bar down to a few nanobars. Results. (i) A pressure of 1.18 +/- 0.03 mu bar is found at a reference radius of 1400 km (47 km altitude). (ii) A new analysis of the Voyager 2 radio science occultation shows that this is consistent with an extrapolation of pressure down to the surface pressure obtained in 1989. (iii) A survey of occultations obtained between 1989 and 2017 suggests that an enhancement in surface pressure as reported during the 1990s might be real, but debatable, due to very few high S/N light curves and data accessible for reanalysis. The volatile transport model analysed supports a moderate increase in surface pressure, with a maximum value around 2005-2015 no higher than 23 mu bar. The pressures observed in 1995-1997 and 2017 appear mutually inconsistent with the volatile transport model presented here. (iv) The central flash structure does not show evidence of an atmospheric distortion. We find an upper limit of 0.0011 for the apparent oblateness of the atmosphere near the 8 km altitude.J.M.O. acknowledges financial support from the Portuguese Foundation for Science and Technology (FCT) and the European Social Fund (ESF) through the PhD grant SFRH/BD/131700/2017. The work leading to these results has received funding from the European Research Council under the European Community's H2020 2014-2021 ERC grant Agreement nffi 669416 "Lucky Star". We thank S. Para who supported some travels to observe the 5 October 2017 occultation. T.B. was supported for this research by an appointment to the National Aeronautics and Space Administration (NASA) Post-Doctoral Program at the Ames Research Center administered by Universities Space Research Association (USRA) through a contract with NASA. We acknowledge useful exchanges with Mark Gurwell on the ALMA CO observations. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium).Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. J.L.O., P.S.-S., N.M. and R.D. acknowledge financial support from the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award to the Instituto de Astrofisica de Andalucia (SEV-2017-0709), they also acknowledge the financial support by the Spanish grant AYA-2017-84637-R and the Proyecto de Excelencia de la Junta de Andalucia J.A. 2012-FQM1776. The research leading to these results has received funding from the European Union's Horizon 2020 Research and Innovation Programme, under Grant Agreement no. 687378, as part of the project "Small Bodies Near and Far" (SBNAF). P.S.-S. acknowledges financial support by the Spanish grant AYA-RTI2018-098657-J-I00 "LEO-SBNAF". The work was partially based on observations made at the Laboratorio Nacional de Astrofisica (LNA), Itajuba-MG, Brazil. The following authors acknowledge the respective CNPq grants: F.B.-R. 309578/2017-5; R.V.-M. 304544/2017-5, 401903/2016-8; J.I.B.C. 308150/2016-3 and 305917/2019-6; M.A. 427700/20183, 310683/2017-3, 473002/2013-2. This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior -Brasil (CAPES) -Finance Code 001 and the National Institute of Science and Technology of the e-Universe project (INCT do e-Universo, CNPq grant 465376/2014-2). G.B.R. acknowledges CAPES-FAPERJ/PAPDRJ grant E26/203.173/2016 and CAPES-PRINT/UNESP grant 88887.571156/2020-00, M.A. FAPERJ grant E26/111.488/2013 and A.R.G.Jr. FAPESP grant 2018/11239-8. B.E.M. thanks CNPq 150612/2020-6 and CAPES/Cofecub-394/2016-05 grants. Part of the photometric data used in this study were collected in the frame of the photometric observations with the robotic and remotely controlled telescope at the University of Athens Observatory (UOAO; Gazeas 2016). The 2.3 m Aristarchos telescope is operated on Helmos Observatory by the Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing of the National Observatory of Athens. Observations with the 2.3 m Aristarchos telescope were carried out under OPTICON programme. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730890. This material reflects only the authors views and the Commission is not liable for any use that may be made of the information contained therein. The 1. 2m Kryoneri telescope is operated by the Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing of the National Observatory of Athens. The Astronomical Observatory of the Autonomous Region of the Aosta Valley (OAVdA) is managed by the Fondazione Clement Fillietroz-ONLUS, which is supported by the Regional Government of the Aosta Valley, the Town Municipality of Nus and the "Unite des Communes valdotaines Mont-Emilius". The 0.81 m Main Telescope at the OAVdA was upgraded thanks to a Shoemaker NEO Grant 2013 from The Planetary Society. D.C. and J.M.C. acknowledge funds from a 2017 'Research and Education' grant from Fondazione CRT-Cassa di Risparmio di Torino. P.M. acknowledges support from the Portuguese Fundacao para a Ciencia e a Tecnologia ref. PTDC/FISAST/29942/2017 through national funds and by FEDER through COMPETE 2020 (ref. POCI010145 FEDER007672). F.J. acknowledges Jean Luc Plouvier for his help. S.J.F. and C.A. would like to thank the UCL student support observers: Helen Dai, Elise Darragh-Ford, Ross Dobson, Max Hipperson, Edward Kerr-Dineen, Isaac Langley, Emese Meder, Roman Gerasimov, Javier Sanjuan, and Manasvee Saraf. We are grateful to the CAHA, OSN and La Hita Observatory staffs. This research is partially based on observations collected at Centro Astronomico HispanoAleman (CAHA) at Calar Alto, operated jointly by Junta de Andalucia and Consejo Superior de Investigaciones Cientificas (IAA-CSIC). This research was also partially based on observation carried out at the Observatorio de Sierra Nevada (OSN) operated by Instituto de Astrofisica de Andalucia (CSIC). This article is also based on observations made with the Liverpool Telescope operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council. Partially based on observations made with the Tx40 and Excalibur telescopes at the Observatorio Astrofisico de Javalambre in Teruel, a Spanish Infraestructura Cientifico-Tecnica Singular (ICTS) owned, managed and operated by the Centro de Estudios de Fisica del Cosmos de Aragon (CEFCA). Tx40 and Excalibur are funded with the Fondos de Inversiones de Teruel (FITE). A.R.R. would like to thank Gustavo Roman for the mechanical adaptation of the camera to the telescope to allow for the observation to be recorded. R.H., J.F.R., S.P.H. and A.S.L. have been supported by the Spanish projects AYA2015-65041P and PID2019-109467GB-100 (MINECO/FEDER, UE) and Grupos Gobierno Vasco IT1366-19. Our great thanks to Omar Hila and their collaborators in Atlas Golf Marrakech Observatory for providing access to the T60cm telescope. TRAPPIST is a project funded by the Belgian Fonds (National) de la Recherche Scientifique (F.R.S.-FNRS) under grant PDR T.0120.21. TRAPPIST-North is a project funded by the University of Liege, and performed in collaboration with Cadi Ayyad University of Marrakesh. E.J. is a FNRS Senior Research Associate
    corecore