189 research outputs found

    \u3ci\u3eAnaphes\u3c/i\u3e (Hymenoptera: Mymaridae) Reared from the Eggs of a Shore Fly (Diptera: Ephydridae)

    Get PDF
    Members of the family Mymaridae are obligate parasitoids of insect eggs, and some species attack the eggs of aquatic insects. Only one account of egg parasitism by the mymarid genus Anaphes on Diptera has been disclosed in the literature. Bakkendorf (1971) bred Anaphes autumnalis Foerster from an egg of Tipula autumnalis Loew

    A Possible Case of Spatial Isolation in Brine Flies of the Genus \u3ci\u3eEphydra\u3c/i\u3e (Diptera: Ephydridae)

    Get PDF
    (excerpt) During the summer of 1975, adults and larvae of Ephydra riparia Fallen and E. cinerea Jones were encountered in the many brine pools occurring on the property of the Morton Salt Company at Rittman, Wayne County, Ohio (Scheiring and Foote, 1973). Larvae of both species have been reported to be salt tolerant (Bayly, 1972). E. ripariu larvae can survive in salinities up to 80°/oo (Sutcliffe, 1960), and the larvae of cinerea have been encountered by Nemenz (1960) in the Great Salt Lake of Utah at a salinity of 300°/oo

    Stand Hazard Rating for Central Idaho Forests

    Get PDF

    Detection by NMR of a "local spin-gap" in quenched CsC60

    Full text link
    We present a 13C and 133Cs NMR investigation of the CsC60 cubic quenched phase. Previous ESR measurements suggest that this phase is metallic, but NMR reveals contrasting electronic behavior on the local scale. The 13C spin-lattice relaxation time (T1) exhibits a typical metallic behavior down to 50 K, but indicates that a partial spin-gap opens for T<50 K. Unexpectedly, 133Cs NMR shows that there are two inequivalent Cs sites. For one of these sites, the NMR shift and (T1T)^{-1} follow an activated law, confirming the existence of a spin-gap. We ascribe this spin-gap to the occurrence of localized spin-singlets on a small fraction of the C60 molecules.Comment: 4 figure

    Myc depletion induces a pluripotent dormant state mimicking diapause

    Get PDF
    Mouse embryonic stem cells (ESCs) are maintained in a naive ground state of pluripotency in the presence of MEK and GSK3 inhibitors. Here, we show that ground-state ESCs express low Myc levels. Deletion of both c-myc and N-myc (dKO) or pharmacological inhibition of Myc activity strongly decreases transcription, splicing, and protein synthesis, leading to proliferation arrest. This process is reversible and occurs without affecting pluripotency, suggesting that Myc-depleted stem cells enter a state of dormancy similar to embryonic diapause. Indeed, c-Myc is depleted in diapaused blastocysts, and the differential expression signatures of dKO ESCs and diapaused epiblasts are remarkably similar. Following Myc inhibition, pre-implantation blastocysts enter biosynthetic dormancy but can progress through their normal developmental program after transfer into pseudo-pregnant recipients. Our study shows that Myc controls the biosynthetic machinery of stem cells without affecting their potency, thus regulating their entry and exit from the dormant state.This work was supported by the FOR2033 and SFB873 funded by the Deutsche Forschungsgemeinschaft (DFG), the Dietmar Hopp Foundation (all to A.T.), and the Wellcome Trust (to A.S.)

    Altered Velocity Processing in Schizophrenia during Pursuit Eye Tracking

    Get PDF
    Smooth pursuit eye movements (SPEM) are needed to keep the retinal image of slowly moving objects within the fovea. Depending on the task, about 50%–80% of patients with schizophrenia have difficulties in maintaining SPEM. We designed a study that comprised different target velocities as well as testing for internal (extraretinal) guidance of SPEM in the absence of a visual target. We applied event-related fMRI by presenting four velocities (5, 10, 15, 20°/s) both with and without intervals of target blanking. 17 patients and 16 healthy participants were included. Eye movements were registered during scanning sessions. Statistical analysis included mixed ANOVAs and regression analyses of the target velocity on the Blood Oxygen Level Dependency (BOLD) signal. The main effect group and the interaction of velocity×group revealed reduced activation in V5 and putamen but increased activation of cerebellar regions in patients. Regression analysis showed that activation in supplementary eye field, putamen, and cerebellum was not correlated to target velocity in patients in contrast to controls. Furthermore, activation in V5 and in intraparietal sulcus (putative LIP) bilaterally was less strongly correlated to target velocity in patients than controls. Altered correlation of target velocity and neural activation in the cortical network supporting SPEM (V5, SEF, LIP, putamen) implies impaired transformation of the visual motion signal into an adequate motor command in patients. Cerebellar regions seem to be involved in compensatory mechanisms although cerebellar activity in patients was not related to target velocity

    Studies of micronuclei and other nuclear abnormalities in red blood cells of Colossoma macropomum exposed to methylmercury

    Get PDF
    The frequencies of micronuclei (MN) and morphological nuclear abnormalities (NA) in erythrocytes in the peripheral blood of tambaqui (Colossoma macropomum), treated with 2 mg.L−1 methylmercury (MeHg), were analyzed. Two groups (nine specimens in each) were exposed to MeHg for different periods (group A - 24 h; group B - 120 h). A third group served as negative control (group C, untreated; n = 9). Although, when compared to the control group there were no significant differences in MN frequency in the treated groups, for NA, the differences between the frequencies of group B (treated for 120 h) and the control group were extremely significant (p < 0.02), thus demonstrating the potentially adverse effects of MeHg on C. macropomum erythrocytes after prolonged exposure

    Neuronal activity in medial superior temporal area (MST) during memory-based smooth pursuit eye movements in monkeys

    Get PDF
    We examined recently neuronal substrates for predictive pursuit using a memory-based smooth pursuit task that distinguishes the discharge related to memory of visual motion-direction from that related to movement preparation. We found that the supplementary eye fields (SEF) contain separate signals coding memory and assessment of visual motion-direction, decision not-to-pursue, and preparation for pursuit. Since medial superior temporal area (MST) is essential for visual motion processing and projects to SEF, we examined whether MST carried similar signals. We analyzed the discharge of 108 MSTd neurons responding to visual motion stimuli. The majority (69/108 = 64%) were also modulated during smooth pursuit. However, in nearly all (104/108 = 96%) of the MSTd neurons tested, there was no significant discharge modulation during the delay periods that required memory of visual motion-direction or preparation for smooth pursuit or not-to-pursue. Only 4 neurons of the 108 (4%) exhibited significantly higher discharge rates during the delay periods; however, their responses were non-directional and not instruction specific. Representative signals in the MSTd clearly differed from those in the SEF during memory-based smooth pursuit. MSTd neurons are unlikely to provide signals for memory of visual motion-direction or preparation for smooth pursuit eye movements

    Toward a 21st-century health care system: Recommendations for health care reform

    Get PDF
    The coverage, cost, and quality problems of the U.S. health care system are evident. Sustainable health care reform must go beyond financing expanded access to care to substantially changing the organization and delivery of care. The FRESH-Thinking Project (www.fresh-thinking.org) held a series of workshops during which physicians, health policy experts, health insurance executives, business leaders, hospital administrators, economists, and others who represent diverse perspectives came together. This group agreed that the following 8 recommendations are fundamental to successful reform: 1. Replace the current fee-for-service payment system with a payment system that encourages and rewards innovation in the efficient delivery of quality care. The new payment system should invest in the development of outcome measures to guide payment. 2. Establish a securely funded, independent agency to sponsor and evaluate research on the comparative effectiveness of drugs, devices, and other medical interventions. 3. Simplify and rationalize federal and state laws and regulations to facilitate organizational innovation, support care coordination, and streamline financial and administrative functions. 4. Develop a health information technology infrastructure with national standards of interoperability to promote data exchange. 5. Create a national health database with the participation of all payers, delivery systems, and others who own health care data. Agree on methods to make de-identified information from this database on clinical interventions, patient outcomes, and costs available to researchers. 6. Identify revenue sources, including a cap on the tax exclusion of employer-based health insurance, to subsidize health care coverage with the goal of insuring all Americans. 7. Create state or regional insurance exchanges to pool risk, so that Americans without access to employer-based or other group insurance could obtain a standard benefits package through these exchanges. Employers should also be allowed to participate in these exchanges for their employees' coverage. 8. Create a health coverage board with broad stakeholder representation to determine and periodically update the affordable standard benefit package available through state or regional insurance exchanges

    Deciphering the stem cell machinery as a basis for understanding the molecular mechanism underlying reprogramming

    Get PDF
    Stem cells provide fascinating prospects for biomedical applications by combining the ability to renew themselves and to differentiate into specialized cell types. Since the first isolation of embryonic stem (ES) cells about 30 years ago, there has been a series of groundbreaking discoveries that have the potential to revolutionize modern life science. For a long time, embryos or germ cell-derived cells were thought to be the only source of pluripotency—a dogma that has been challenged during the last decade. Several findings revealed that cell differentiation from (stem) cells to mature cells is not in fact an irreversible process. The molecular mechanism underlying cellular reprogramming is poorly understood thus far. Identifying how pluripotency maintenance takes place in ES cells can help us to understand how pluripotency induction is regulated. Here, we review recent advances in the field of stem cell regulation focusing on key transcription factors and their functional interplay with non-coding RNAs
    corecore