566 research outputs found
Faxen relations in solids - a generalized approach to particle motion in elasticity and viscoelasticity
A movable inclusion in an elastic material oscillates as a rigid body with
six degrees of freedom. Displacement/rotation and force/moment tensors which
express the motion of the inclusion in terms of the displacement and force at
arbitrary exterior points are introduced. Using reciprocity arguments two
general identities are derived relating these tensors. Applications of the
identities to spherical particles provide several new results, including simple
expressions for the force and moment on the particle due to plane wave
excitation.Comment: 11 pages, 4 figure
A note on dissipative particle dynamics (DPD) modelling of simple fluids
In this paper, we show that a Dissipative Particle Dynamics (DPD) model of a viscous Newtonian fluid may actually produce a linear viscoelastic fluid. We demonstrate that a single set of DPD particles can be used to model a linear viscoelastic fluid with its physical parameters, namely the dynamical viscosity and the relaxation time in its memory kernel, determined from the DPD system at equilibrium. The emphasis of this study is placed on (i) the estimation of the linear viscoelastic effect from the standard parameter choice; and (ii) the investigation of the dependence of the DPD transport properties on the length and time scales, which are introduced from the physical phenomenon under examination. Transverse-current auto-correlation functions (TCAF) in Fourier space are employed to study the effects of the length scale, while analytic expressions of the shear stress in a simple small amplitude oscillatory shear flow are utilised to study the effects of the time scale. A direct mechanism for imposing the particle diffusion time and fluid viscosity in the hydrodynamic limit on the DPD system is also proposed
Investigating the Impact of the Deeper Learning Curriculum on High School Students\u27 Understanding of Drug Discovery
In the summer of 2014, 23 local high school students participated in a pipeline program on the campus of Cleveland State University. The program, entitled “Careers in Health and Medical Professions” (CHAMPS), serves to prepare college-bound students for careers in the medical field. CHAMPS utilizes a simulated drug discovery curriculum based on “Deeper Learning” (Jensen & Nicholsen, 2008) to provide the high school students with authentic hands-on research experience. There are four main goals in this program: increase awareness of medical careers, introduce knowledge related to drug discovery, build on students’ academic skills, and familiarize the students with 21st century skills. Three undergraduate student researchers were assigned to investigate these goals using a variety of methods, including surveys, individual and group interviews, and laboratory observations. General findings include participants were surprised at the source of drugs; their awareness of health and medical careers increased but their specific career did not change; and nearly all of the students possessed a proficient level of inter-personal skills, communication, and technology prowess.https://engagedscholarship.csuohio.edu/u_poster_2014/1009/thumbnail.jp
Recommended from our members
Lobaric acid prevents the adverse effects of tetramethrin on the estrous cycle of female albino Wistar rats.
Tetramethrin (Tm) is a commonly used pesticide that has been reported to exert estrogen-antagonistic effects selectively on female rats. The present study was undertaken to assess the protective role of lobaric acid (La) on estrous cycle in Tm-treated female Wistar rats. Female rats were exposed to Tm (50 mg/kg b.w/day) only or in combination with La at low (50 mg/kg b.w/day) or high (100 mg/kg b.w/day) dose for 30 days. The results showed that Tm altered the estrous cycle of female rats by decreasing the levels of luteinizing hormone, follicular-stimulating hormone, progesterone, estrone, and estradiol while increasing testosterone level. The morphology of vaginal smears of Tm-treated female rats showed the presence of abnormal cells and/or structures at different phases of estrus cycle. Strikingly, in (Tm + La)-treated rats, all the observed adverse effects of Tm on the hormonal parameters, cell morphology, and the length of each phase of estrous cycle were significantly diminished in a dose-dependent manner. The docking results showed that La competes with Tm for Gonadotropin-Releasing Hormone (GnRH) receptor, thereby reducing the toxicity of Tm but did not cancel the response of GnRH receptor completely. In conclusion, our results designated that La could be used as a potential candidate in the management of insecticide-induced alterations of the reproductive cycle of rodents
Deep Learning-Based Signal Detection for Dual-Mode Index Modulation 3D-OFDM
In this paper, we propose a deep learning-based signal detector called
DuaIM-3DNet for dual-mode index modulation-based three-dimensional (3D)
orthogonal frequency division multiplexing (DM-IM-3D-OFDM). Herein, DM-IM-3D-
OFDM is a subcarrier index modulation scheme which conveys data bits via both
dual-mode 3D constellation symbols and indices of active subcarriers. Thus,
this scheme obtains better error performance than the existing IM schemes when
using the conventional maximum likelihood (ML) detector, which, however,
suffers from high computational complexity, especially when the system
parameters increase. In order to address this fundamental issue, we propose the
usage of a deep neural network (DNN) at the receiver to jointly and reliably
detect both symbols and index bits of DM-IM-3D-OFDM under Rayleigh fading
channels in a data-driven manner. Simulation results demonstrate that our
proposed DNN detector achieves near-optimal performance at significantly lower
runtime complexity compared to the ML detector
A Mouse with a Loss-of-function Mutation in the c-Cbl TKB Domain Shows Perturbed Thymocyte Signaling without Enhancing the Activity of the ZAP-70 Tyrosine Kinase
The unique tyrosine kinase binding (TKB) domain of Cbl targets phosphorylated tyrosines on activated protein tyrosine kinases (PTKs); this targeting is considered essential for Cbl proteins to negatively regulate PTKs. Here, a loss-of-function mutation (G304E) in the c-Cbl TKB domain, first identified in Caenorhabditis elegans, was introduced into a mouse and its effects in thymocytes and T cells were studied. In marked contrast to the c-Cbl knockout mouse, we found no evidence of enhanced activity of the ZAP-70 PTK in thymocytes from the TKB domain mutant mouse. This finding contradicts the accepted mechanism of c-Cbl–mediated negative regulation, which requires TKB domain targeting of phosphotyrosine 292 in ZAP-70. However, the TKB domain mutant mouse does show aspects of enhanced signaling that parallel those of the c-Cbl knockout mouse, but these involve the constitutive activation of Rac and not enhanced PTK activity. Furthermore, the enhanced signaling in CD4+CD8+ double positive thymocytes appears to be compensated by the selective down-regulation of CD3 on mature thymocytes and peripheral T cells from both strains of mutant c-Cbl mice
A Pathogen Secreted Protein as a Detection Marker for Citrus Huanglongbing.
The citrus industry is facing an unprecedented crisis due to Huanglongbing (HLB, aka citrus greening disease), a bacterial disease associated with the pathogen Candidatus Liberibacter asiaticus (CLas) that affects all commercial varieties. Transmitted by the Asian citrus psyllid (ACP), CLas colonizes citrus phloem, leading to reduced yield and fruit quality, and eventually tree decline and death. Since adequate curative measures are not available, a key step in HLB management is to restrict the spread of the disease by identifying infected trees and removing them in a timely manner. However, uneven distribution of CLas cells in infected trees and the long latency for disease symptom development makes sampling of trees for CLas detection challenging. Here, we report that a CLas secreted protein can be used as a biomarker for detecting HLB infected citrus. Proteins secreted from CLas cells can presumably move along the phloem, beyond the site of ACP inoculation and CLas colonized plant cells, thereby increasing the chance of detecting infected trees. We generated a polyclonal antibody that effectively binds to the secreted protein and developed serological assays that can successfully detect CLas infection. This work demonstrates that antibody-based diagnosis using a CLas secreted protein as the detection marker for infected trees offers a high-throughput and economic approach that complements the approved quantitative polymerase chain reaction-based methods to enhance HLB management programs
Role of dynamic Jahn-Teller distortions in Na2C60 and Na2CsC60 studied by NMR
Through 13C NMR spin lattice relaxation (T1) measurements in cubic Na2C60, we
detect a gap in its electronic excitations, similar to that observed in
tetragonal A4C60. This establishes that Jahn-Teller distortions (JTD) and
strong electronic correlations must be considered to understand the behaviour
of even electron systems, regardless of the structure. Furthermore, in metallic
Na2CsC60, a similar contribution to T1 is also detected for 13C and 133Cs NMR,
implying the occurence of excitations typical of JT distorted C60^{2-} (or
equivalently C60^{4-}). This supports the idea that dynamic JTD can induce
attractive electronic interactions in odd electron systems.Comment: 3 figure
Transformation from 2D structural drawing to building information model: Perspectives from a small-scaled company
Building information modelling (BIM) is one of the revolutions in construction industry. BIM is one of the long-waiting solutions for construction industry in order to solve the arisen quality and effectiveness problems. Many researchers have proved the benefits gained from BIM. In this paper, the structural package available in BIM platform is summarized and its maturity is discussed. The BIM projects in Malaysia are listed and it showed a low local BIM implementation. In the perspectives of engineers, migrating from 2D drawing to building information model is discussed with the faced problems and challenges. The technical supports such as internet supports, cloud system and etc. was lacked for small-scaled companies; and self-transformation plan is not available which is believed to minimize the lost during transformation. From structural engineers' perspective, a better visualization with building information models is critical to address these major problems occurred throughout the migration. However, more time are expected to be consumed in producing the models as it was found that there is a low level of model sharing between engineers and architects. Although the BIM implementation in Malaysia is still in a low level, it is advised that industry players and government should work together to migrating from traditional method to BIM environment
Visualizing the role of Cbl-b in control of islet-reactive CD4 T cells and susceptibility to Type 1 Diabetes
The E3 ubiquitin ligase Cbl-b regulates T cell activation thresholds and has been associated with protecting against Type 1 diabetes, but its in vivo role in the process of self-tolerance has not been examined at the level of potentially auto-aggressive CD4+ T cells. Here we visualize the consequences of Cbl-b deficiency on self-tolerance to lysozyme antigen expressed in transgenic mice under control of the insulin promoter (insHEL). By tracing the fate of pancreatic islet-reactive CD4+ T cells in pre-diabetic 3A9-TCR x insHEL double-transgenic mice, we find that Cbl-b deficiency contrasts with AIRE or IL-2 deficiency because it does not affect thymic negative selection of islet-reactive CD4+ cells nor the numbers of islet-specific CD4+ or CD4+ FOXP3+ T cells in the periphery, although it decreased differentiation of inducible Treg (iTreg) cells from TGF-b treated 3A9-TCR cells in vitro. When removed from Tregs and placed in culture, Cblb-deficient islet-reactive CD4+ cells reveal a capacity to proliferate to HEL antigen that is repressed in wild-type cells. This latent failure of T cell anergy is nevertheless controlled in vivo in pre-diabetic mice, so that islet-reactive CD4+ cells in spleen and pancreatic lymph node of Cblb-deficient mice show no evidence of increased activation or proliferation in situ. Cblb-deficiency subsequently precipitated diabetes in most TCR:insHEL animals by 15 wks of age. These results reveal a role for peripheral T cell anergy in organ-specific self-tolerance, and illuminate the interplay between Cblb-dependent anergy and other mechanisms for preventing organ-specific autoimmunity
- …