954 research outputs found

    Harnessing AI for Speech Reconstruction using Multi-view Silent Video Feed

    Full text link
    Speechreading or lipreading is the technique of understanding and getting phonetic features from a speaker's visual features such as movement of lips, face, teeth and tongue. It has a wide range of multimedia applications such as in surveillance, Internet telephony, and as an aid to a person with hearing impairments. However, most of the work in speechreading has been limited to text generation from silent videos. Recently, research has started venturing into generating (audio) speech from silent video sequences but there have been no developments thus far in dealing with divergent views and poses of a speaker. Thus although, we have multiple camera feeds for the speech of a user, but we have failed in using these multiple video feeds for dealing with the different poses. To this end, this paper presents the world's first ever multi-view speech reading and reconstruction system. This work encompasses the boundaries of multimedia research by putting forth a model which leverages silent video feeds from multiple cameras recording the same subject to generate intelligent speech for a speaker. Initial results confirm the usefulness of exploiting multiple camera views in building an efficient speech reading and reconstruction system. It further shows the optimal placement of cameras which would lead to the maximum intelligibility of speech. Next, it lays out various innovative applications for the proposed system focusing on its potential prodigious impact in not just security arena but in many other multimedia analytics problems.Comment: 2018 ACM Multimedia Conference (MM '18), October 22--26, 2018, Seoul, Republic of Kore

    Technical Performance and Energy Intensity of the Electrode-Separator Composite Manufacturing Process

    Get PDF
    AbstractEnergy storage is one of the key technological factors that determine the success of a sustainable future. Especially green mobility concepts for electric or hybrid electric vehicles highly depend upon storage technologies with high energy density and light-weight materials. At the same time, innovative production processes should be conceived that ensure energy and resource efficient manufacturing of these energy storage devices. This paper focuses on the technical as well as dynamic energetic performance analysis and evaluation of an innovative electrode-separator composite manufacturing process of lithium-ion batteries for automotive applications. The technical performance indicators such as battery capacity and the energy intensity of the manufacturing process are highly dependent upon process parameters, machine and product design. Hence, in-depth process knowledge must be acquired to understand interdependencies between all system components. Thus, the manufacturing process is analysed in terms of its dynamics, and correlations between process parameters, process energy demand and final product properties are assessed. The resulting knowledge is important for the subsequent design of large-scale products and processes involved design, as well as for characterisation of the manufacturing process for life cycle inventory databases or life cycle costing calculations

    Evolution of the electronic structure of Cs<sub>2</sub>H<sub>2</sub>PVMo<sub>11</sub>O<sub>40</sub> under the influence of propene and propene/O<sub>2</sub>

    No full text
    Evolution of the Electronic Structure of Cs2H2PVMo11O40 under the Influence of Propene and Propene/O2 J. Kröhnert, F.C. Jentoft, J. Melsheimer, R. Ahmad, M. Thiede, G. Mestl, and R. Schlögl Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Faradayweg 4-6, Germany Changes in the electronic and vibrational spectra of Cs2H2PVMo11O40 in the presence of propene (1) or propene/O2 (2) were followed by in situ UV/Vis/NIR diffuse reflectance spec-troscopy. (1) At 298 K propene leads to reduction as indicated by a broad absorption band extending from the Vis to the NIR range. Iso-propanol was detected at 323 K and the maxi-mum of the broad band shifted from 740 to 700 nm. At higher temperatures the visible ab-sorption band shifted back about 25 nm. (2) Under conditions of catalytic oxidation a propene conversion of ca. 4% was detected with acrolein and CO as major products (670 K). Although the absorption band in the Vis range is less pronounced than in the presence of propene only at the same temperature, the catalyst is not restored to its fully oxidized state. The evolution of a band at 680-700 nm at 620-670 K indicates the formation of a structure with reduced and oxidized metal sites next to each other. This maybe related to the observation of molydenyl and vanadyl species in post mortem Raman spectra. 1. Introduction Cs salts of the vanadomolybdophosphoric acid are, for example, applied as catalysts for oxidative dehydrogenation of isobutyric acid to methacrylic acid [1-3]. The sensitivity of the catalyst under industrial operation suggests that the nature of the active phase may not be identical to the structurally well-defined salts which are molecular solids composed of Keggin ions, Cs cations, and water. Interestingly, the light-off temperature for oxidation reactions coincides with the temperature for the loss of constitutional water [4]. It is thus hypothesized that the water loss is connected to the formation of the active phase, whereby the electronic state of the active phase evolves in an atmosphere that contains both oxidative (O2) and re-ductive (hydrocarbon) components at the same time. In situ UV/Vis/NIR diffuse reflectance spectroscopy offers the unique possibility to si-multaneously investigate electronic features such as d-d transitions, intervalence charge trans-fers (IVCT), and ligand-to-metal charge transfers (LMCT) as well as the vibrational overtones and combination modes of water. From preliminary UV/Vis/NIR experiments, as from other methods (e.g., TG-DTA experiments), it has become clear that catalysts of the type CsxH4-xPVMo11O40 with x = 0-2 are already thermally unstable in the presence of an inert gas. This instability is expressed by the appearance and disappearance of absorption bands. The goal of this work was to investigate the loss of crystal and subsequently constitutio-nal water, and possible concomitant electronic changes of Cs2H2PVMo11O40 under inert, oxi-dative, and reductive conditions over a wide temperature range, as well as under the conditi-ons of oxidation catalysis. Propene was selected as a reactant and the gas phase was monito-red in order to correlate catalytic performance with spectroscopic data. 2. Experimental A Perkin-Elmer Lambda 9 spectrometer with an enlarged integrating sphere was used for in situ UV/Vis/NIR diffuse reflectance spectroscopy on different dilute catalyst samples. So-lutions of Cs2CO3 and heteropoly acid were used for the preparation of the Cs2H2PVMo11O40 samples. Approximately 110 mg of the catalyst (7-10 wt%) were mixed with SiO2 (Heraeus, 0.1-0.4 mm) and placed in a microreactor of in-house design operating under continuous gas flow. Sequential spectroscopic measurements were carried out with a scan speed of 240 nm/min, a slit width of 5.0 nm, and a response time of 0.5 s. SpectralonŸ was used as a refe-rence. The apparent absorption was evaluated from the diffuse reflectance data using the for-mula 1-Rmixture/RSiO2. The feed mixture was 10 vol-% propene in helium or 10 vol-% propene plus 10 vol-% oxygen in helium with a total gas flow of 71 or 74 ml/min, respectively. The gases were analyzed with two gas chromatographs (Perkin Elmer), equipped with heated au-tomatic gas sampling valves, an FFAP column (Macherey-Nagel) and a packed Carboxen-1000 column using FID and TCD in both GCs. Series A experiments (10% propene): The temperature was held constant for 2 h at room temperature (RT), and then the temperature was increased at a rate of 1 K/min to 323 K, and spectra were recorded over a period of ca. 5 hours. Series B experiments (10% propene): The temperature was increased from RT to 323 K and then to 670 K in steps of ~ 50 K (5 K/min heating rate), with a 2 h isothermal period after each step. Series C experiments (10% propene, 10% O2): The temperature was increased as in Series B with extended isothermal periods of 9 h at 413 K and 19 hours at 670 K. 3. Results The Series A spectra show a strong increase in apparent absorption already at RT. After 40 min on stream (RT3 in Fig. 1) a visible absorption band formed at ~ 740 nm and this band underwent a blue shift to 700 nm when the temperature was increased to 319 K. In contrast to similar experiments using He, the crystal water bands at 1430 and 1925 nm already disappear after 70 min on stream (Figure 1). Formation of iso-propanol was detected at 319 K. Series B spectra showed similarly strong changes in apparent absorption with a red shift of ca. 25 nm for the visible absorption band and the appearance of an additional band in the NIR (at ~ 1050 nm). The NIR band (appearing above 560K) is broad and overlaps with the visible band (Fi-gure 2). The visible band increases with increasing temperature until a single broad visi-ble/NIR band forms. For Series C, increasing temperature leads to a decrease in the intensity of the absorption bands, particularly the NIR band (Figure 3). However, the visible band be-comes clearly recognizable again at 563 K; it is possible that a catalytic reaction begins to occur at this temperature. The products acrolein, propionic acid, acrylic acid and water were first detected at 603 K. At 670 K in addition to these products we also detected propionalde-hyde, acetone, CO and acetic acid, with the conversion of propene being ca. 4% and that of O2 ca. 12 %, and the highest selectivities being for acrolein and CO. In the Series C spectra the defined feature in the UV region does not disappear as it did in the Series B spectra at higher temperatures. Under catalytic reaction conditions above 563 K one observes an increase in the intensity of the shifted visible absorption band at 680-700 nm with increasing temperature (=620 K) and time on stream (Figure 4). 4. Discussion The water bands disappear much more readily in the presence of propene than in inert gas, and at the same time, isopropanol is formed. These observations can be explained by an addition of water from the catalyst to propene, a typical acid-catalyzed reaction. Propene thus appears to draw the crystal water from the catalyst, and when the crystal water is gone the constitutional water is removed as well. The sample apparently underwent considerable re-duction even at the relatively low temperature of propene hydration, which corresponds to the observations in inert gas at higher temperature, and reduction generally seems to accompany the water loss. Hence, water, which is added in the industrial oxidation process, may play an essential role in maintaining a certain, i.e. active, state of the catalyst which is different from a van-der-Waals solid built of isolated Keggin units. The electronic structure change in the pre-sence of propene is dramatic; the defined LMCT band is obscured by an intense, almost con-tinuous absorption which is even more pronounced at higher temperatures (up to 670 K). The catalyst sample was black after treatment with the propene atmosphere, in contrast to He-treated catalyst samples that were blue [5]. In the presence of propene and oxygen, the initial reduction at 555 K is partly reversed at 620-670K; however, although excess oxygen is available the catalyst remains in a reduced state. The decrease in the intensity of the visible absorption band below the catalytic reaction temperature (603K) may be attributed to an oxidation of some Mo5+ and V4+ centers by the gas phase oxygen. Above this temperature the absorption band increases with rising tempera-ture through the stronger reduction of the catalyst and at the same time the conversion also increases. The blue shifted absorption band at ca. 680 nm that was observed at 670K could indicate oxygen vacancies that are important for the oxidation reactions. These species may be the same as a species observed in post mortem Raman analysis of these samples that was charac-terized by a shoulder at about 1002 cm-1 and was interpreted as molybdenyl species [6]. Un-der the same conditions, the free acid H4PVMo11O40 showed a blue shift up to 660 nm [5], which might indicate the presence of molybdenyl and vanadyl species in the catalyst sample, since Raman bands were in turn detected at 1008 and 1030 cm-1 [6]. In summary, the changes in electronic structure appear too dramatic to be just a conse-quence of a partial reduction of the Keggin ion; rather it seems that the geometric structure is partially dissolved leading to a transformation from a molecular solid to more condensed oxi-dic species with semiconducting character. The availability of relatively free electrons that is suggested by the continuous character of the UV/Vis spectra at high temperatures is a prere-quisite for the activation of molecular oxygen and thus for the redox catalytic activity. The structural changes are too severe to allow the restoration of the heteropolyacid through the water that is formed in the propene oxidation; and acidic properties also no longer play a role for the product distribution under these conditions. References 1. M. Misono, N. Nojiri, Appl. Catal., 64 (1990) 1. 2. Th. Ilkenhans, B. Herzog, Th. Braun and R. Schlögl, J. Catal., 153 (1995) 275. 3. L. Weismantel, J. Stöckel and G. Emig, Appl. Catal., 137 (1996) 129. 4. S. Berndt, Dissertation, TU Berlin, 1999. 5. J. Kröhnert, O. Timpe, J. Melsheimer, F.C. Jentoft, G. Mestl and R. Schlögl, to be pub-lished. 6. G. Mestl, T. Ilkenhans, D. Spielbauer, M. Dieterle, O. Timpe, J. Kröhnert, F.C. Jentoft, H. Knözinger and R. Schlögl, Appl. Catal. A, submitted

    Comparison of the Antiseptic Efficacy of Tissue-Tolerable Plasma and an Octenidine Hydrochloride-Based Wound Antiseptic on Human Skin

    Get PDF
    Colonization and infection of wounds represent a major reason for the impairment of tissue repair. Recently, it has been reported that tissue-tolerable plasma (TTP) is highly efficient in the reduction of the bacterial load of the skin. In the present study, the antiseptic efficacy of TTP was compared to that of octenidine hydrochloride with 2-phenoxyethanol. Both antiseptic methods proved to be highly efficient. Cutaneous treatment of the skin with octenidine hydrochloride and 2-phenoxyethanol leads to a 99% elimination of the bacteria, and 74% elimination is achieved by TTP treatment. Technical challenges with an early prototype TTP device could be held responsible for the slightly reduced antiseptic properties of TTP, compared to a standard antiseptic solution, since the manual treatment of the skin surface with a small beam of the TTP device might have led to an incomplete coverage of the treated area

    In Vivo Expansion of Co-Transplanted T Cells Impacts on Tumor Re-Initiating Activity of Human Acute Myeloid Leukemia in NSG Mice

    Get PDF
    Human cells from acute myeloid leukemia (AML) patients are frequently transplanted into immune-compromised mouse strains to provide an in vivo environment for studies on the biology of the disease. Since frequencies of leukemia re-initiating cells are low and a unique cell surface phenotype that includes all tumor re-initiating activity remains unknown, the underlying mechanisms leading to limitations in the xenotransplantation assay need to be understood and overcome to obtain robust engraftment of AML-containing samples. We report here that in the NSG xenotransplantation assay, the large majority of mononucleated cells from patients with AML fail to establish a reproducible myeloid engraftment despite high donor chimerism. Instead, donor-derived cells mainly consist of polyclonal disease-unrelated expanded co-transplanted human T lymphocytes that induce xenogeneic graft versus host disease and mask the engraftment of human AML in mice. Engraftment of mainly myeloid cell types can be enforced by the prevention of T cell expansion through the depletion of lymphocytes from the graft prior transplantation

    Data for the co-expression and purification of human recombinant CaMKK2 in complex with calmodulin in Escherichia coli

    Get PDF
    AbstractCalcium/calmodulin-dependent kinase kinase 2 (CaMKK2) has been implicated in a range of conditions and pathologies from prostate to hepatic cancer. Here, we describe the expression in Escherichia coli and the purification protocol for the following constructs: full-length CaMKK2 in complex with CaM, CaMKK2 ‘apo’, CaMKK2 (165-501) in complex with CaM, and the CaMKK2 F267G mutant. The protocols described have been optimized for maximum yield and purity with minimal purification steps required and the proteins subsequently used to develop a fluorescence-based assay for drug binding to the kinase, “Using the fluorescent properties of STO-609 as a tool to assist structure-function analyses of recombinant CaMKK2” [1]

    CTCF modulates Estrogen Receptor function through specific chromatin and nuclear matrix interactions

    Get PDF
    Enhancer regions and transcription start sites of estrogen-target regulated genes are connected by means of Estrogen Receptor long-range chromatin interactions. Yet, the complete molecular mechanisms controlling the transcriptional output of engaged enhancers and subsequent activation of coding genes remain elusive. Here, we report that CTCF binding to enhancer RNAs is enriched when breast cancer cells are stimulated with estrogen. CTCF binding to enhancer regions results in modulation of estrogen-induced gene transcription by preventing Estrogen Receptor chromatin binding and by hindering the formation of additional enhancer-promoter ER looping. Furthermore, the depletion of CTCF facilitates the expression of target genes associated with cell division and increases the rate of breast cancer cell proliferation. We have also uncovered a genomic network connecting loci enriched in cell cycle regulator genes to nuclear lamina that mediates the CTCF function. The nuclear lamina and chromatin interactions are regulated by estrogen-ER. We have observed that the chromatin loops formed when cells are treated with estrogen establish contacts with the nuclear lamina. Once there, the portion of CTCF associated with the nuclear lamina interacts with enhancer regions, limiting the formation of ER loops and the induction of genes present in the loop. Collectively, our results reveal an important, unanticipated interplay between CTCF and nuclear lamina to control the transcription of ER target genes, which has great implications in the rate of growth of breast cancer cells

    Using the fluorescent properties of STO-609 as a tool to assist structure-function analyses of recombinant CaMKK2

    Get PDF
    Calcium/calmodulin-dependent kinase kinase 2 (CaMKK2) has been implicated in the regulation of metabolic activity in cancer and immune cells, and affects whole-body metabolism by regulating ghrelinsignalling in the hypothalamus. This has led to efforts to develop specific CaMKK2 inhibitors, and STO- 609 is the standardly used CaMKK2 inhibitor to date. We have developed a novel fluorescence-based assay by exploiting the intrinsic fluorescence properties of STO-609. Here, we report an in vitro binding constant of KD ~17 nM between STO-609 and purified CaMKK2 or CaMKK2:Calmodulin complex. Whereas high concentrations of ATP were able to displace STO-609 from the kinase, GTP was unable to achieve this confirming the specificity of this association. Recent structural studies on the kinase domain of CaMKK2 had implicated a number of amino acids involved in the binding of STO-609. Our fluorescent assay enabled us to confirm that Phe267 is critically important for this association since mutation of this residue to a glycine abolished the binding of STO-609. An ATP replacement assay, as well as the mutation of the ‘gatekeeper’ amino acid Phe267Gly, confirmed the specificity of the assay and once more confirmed the strong binding of STO-609 to the kinase. In further characterising the purified kinase and kinasecalmodulin complex we identified a number of phosphorylation sites some of which corroborated previously reported CaMKK2 phosphorylation and some of which, particularly in the activation segment, were novel phosphorylation events. In conclusion, the intrinsic fluorescent properties of STO-609 provide a great opportunity to utilise this drug to label the ATP-binding pocket and probe the impact of mutations and other regulatory modifications and interactions on the pocket. It is however clear that the number of phosphorylation sites on CaMKK2 will pose a challenge in studying the impact of phosphorylation on the pocket unless the field can develop approaches to control the spectrum of modifications that occur during recombinant protein expression in Escherichia coli.</p

    Einfluss von Temperatur und Gasphase auf Cs<sub>x</sub>H<sub>4-x</sub>PVMo<sub>11</sub>O<sub>40</sub> (x=0,2): In situ UV/Vis/NIR-Spektroskopie

    No full text
    Einfluß von Temperatur und Gasphase auf CsxH4-xPVMo11O40 (x=0,2): In situ UV/Vis/NIR-Spektroskopie J. Melsheimer, J. Kröhnert, M. Thiede, G. Mestl, F.C. Jentoft, R. Schlögl Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, D-14195 Berlin - EinfĂŒhrung in die Problemstellung Cs-Salze der VanadomolybdophosphorsĂ€ure finden technischen Einsatz fĂŒr die MethacrylsĂ€uresynthese [1]. Die Natur der aktiven Phase, die sich wahrscheinlich erst bei erhöhter Temperatur im sowohl oxidative als auch reduktive Komponenten enthaltenden Reaktionsgas bildet und eine Zwischenstufe zwischen molekularen (Keggin-Einheiten) und polymeren Spezies (Endprodukt MoO3) darstellen könnte, ist unbekannt. Die Aktivierung unter inerten (He), oxidativen (O2) und reduktiven (Propen) Bedingungen wurde in situ mit UV/Vis/NIR- Spektroskopie in Diffuser Reflexion verfolgt. - Experimentelles H4PVMo11O40 (H4A) und Cs2H2PVMo11O40 (Cs2A), hergestellt ĂŒber das Oxidverfahren [2] sowie durch FĂ€llung mit Cs2CO3, wurden mit vorgesintertem SiO2 verdĂŒnnt (10 Gew.% CsxA). Die Proben wurden im gewĂŒnschten Gasstrom (50-70 ml/min, p = 1 atm) in einer selbst entwickelten in situ Zelle mit 5K/min bis 723K erhitzt, und wĂ€hrend zwei-stĂŒndiger Haltezeiten bei bestimmten Temperaturen (ca. alle 50K) wurden Spektren (Perkin Elmer Lambda 9, BaSO4-beschichtete Integrationskugel, di=60 mm) aufgenommen. Wurde Propen eingesetzt, wurde das Reaktorabgas gaschromatographisch analysiert. - Zusammenfassung der Ergebnisse und Schlußfolgerungen Die Ausgangsspektren von H4A und Cs2A sind durch Banden bei ca. 1925, 1470 (sehr schwach) und 1420 nm gekennzeichnet. Diese Banden können Ober- und Kombinationsschwingungen von OH-Gruppen zugeordnet werden und zeigen den Kristallwassergehalt der Probe an. Außerdem wird eine Bande bei 720 nm (H4A) beobachtet, die vermutlich einem Intervalenz-Charge-Transfer (IVCT) Übergang von V4+ zu Mo6+ zugeordnet werden kann. Die durch die erste Ableitung bestimmte Bandkante von H4A lag bei 2.2 eV. Inerte AtmosphĂ€re (He): Bereits bei 373K(H4A) bzw. 403K (Cs2A) sind in den Spektren keine definierten OH-Schwingungen mehr zu erkennen, ĂŒbereinstimmend mit dem Verlust von Kristallwasser, der sich in TG-Messungen durch eine Gewichtsabnahme von ca. 4,5% (Cs2A) und 7,5 % (H4A) bis 423 K Ă€ußert. Gleichzeitig bildet sich eine Absorptionsbande aus, die sich von 670 (H4A) bzw. 720 (Cs2A) bis ca. 1150 nm erstreckt und Maxima bei 720 (H4A) und 750 (Cs2A) nm sowie um 950 nm aufweist. Diese Banden könnten auch IVCT- ÜbergĂ€ngen von V4+ zu Mo6+ zuzuordnen sein und zeigen die partielle Reduktion der Proben an. Ab etwa 418K bis 643K verstĂ€rkt sich die Absorption im Bereich 600 bis 800 nm mit Maxima bei 660 (H4A) und 680-700 nm (Cs2A), was auf eine zunehmende Reduktion hindeutet wie auch die grĂŒne Probenfarbe. Oxidative AtmosphĂ€re (reiner O2): Bis 373K unterscheiden sich die Spektren nicht signifikant von den Messungen im Inertgas. Im Bereich 418-643K weisen beide Kataly-satoren in dem o.a. WellenlĂ€ngenbereich schwĂ€chere Absorptionsbanden als in He auf, d.h. im Sauerstoffstrom unterliegen sie wĂ€hrend des Verlustes an konstitutionellem Wasser möglicherweise simultan Reduktions- und OxidationsvorgĂ€ngen. Reduktive AtmosphĂ€re (10% Propen in He): Im Vergleich zur inerten/oxidativen Umgebung verschwinden die OH-Banden bei beiden Substanzen wesentlich schneller, d.h. bereits nach 105 min bei RT, und die Spektren zeigen eine sehr intensive Absorption ĂŒber den gesamten Vis-Bereich. Bei 323K wird im Abgasstrom i-Propanol detektiert, d.h. Propen entzieht den Proben Kristallwasser unter Bildung des Alkohols, entsprechend einer typischen sĂ€urekatalysierten Reaktion. Bei höheren Temperaturen scheinen die Bandkanten zu verschwinden, die ReflektivitĂ€t sinkt erheblich, und die Proben verfĂ€rben sich schwarz. Gemischte AtmosphĂ€re (10% Propen + 10% O2 in He): Die Oxidation von Propen setzt in Gegenwart von H4A bei 513K ein, wobei die Hauptprodukte (verantwortlich fĂŒr >90% des Propen- bzw. O2-Umsatzes) Wasser, Acrolein und EssigsĂ€ure gebildet werden. Die Starttemperatur in Gegenwart von Cs2A betrĂ€gt 617K, und es wird ein breiteres Produktspektrum detektiert, das als Hauptprodukte Wasser, Acrolein, CO, Propanal, EssigsĂ€ure und Aceton enthĂ€lt. FĂŒr beide Katalysatoren wird mit zunehmender Temperatur eine Bande bei 690-700 nm beobachtet, deren IntensitĂ€t oberhalb von 563K stark ansteigt. Diese Bande könnte fĂŒr die Oxidationsreaktion wichtige Sauerstoffehlstellen anzeigen. - Literatur [1] M. Misono, N. Nojiri, Appl. Catal., 64 (1990) 1. [2] E.O. North, Inorg. Synth., I (1939) 127
    • 

    corecore