157 research outputs found

    Measuring and optimising the efficiency of community hospital inpatient care for older people: the MoCHA mixed-methods study

    Get PDF
    Background: Community hospitals are small hospitals providing local inpatient and outpatient services. National surveys report that inpatient rehabilitation for older people is a core function but there are large differences in key performance measures. We have investigated these variations in community hospital ward performance. Objectives: (1) To measure the relative performance of community hospital wards (studies 1 and 2); (2) to identify characteristics of community hospital wards that optimise performance (studies 1 and 3); (3) to develop a web-based interactive toolkit that supports operational changes to optimise ward performance (study 4); (4) to investigate the impact of community hospital wards on secondary care use (study 5); and (5) to investigate associations between short-term community (intermediate care) services and secondary care utilisation (study 5). Methods: Study 1 – we used national data to conduct econometric estimations using stochastic frontier analysis in which a cost function was modelled using significant predictors of community hospital ward costs. Study 2 – a national postal survey was developed to collect data from a larger sample of community hospitals. Study 3 – three ethnographic case studies were performed to provide insight into less tangible aspects of community hospital ward care. Study 4 – a web-based interactive toolkit was developed by integrating the econometrics (study 1) and case study (study 3) findings. Study 5 – regression analyses were conducted using data from the Atlas of Variation Map 61 (rate of emergency admissions to hospital for people aged ≥ 75 years with a length of stay of < 24 hours) and the National Audit of Intermediate Care. Results: Community hospital ward efficiency is comparable with the NHS acute hospital sector (mean cost efficiency 0.83, range 0.72–0.92). The rank order of community hospital ward efficiencies was distinguished to facilitate learning across the sector. On average, if all community hospital wards were operating in line with the highest cost efficiency, savings of 17% (or £47M per year) could be achieved (price year 2013/14) for our sample of 101 wards. Significant economies of scale were found: a 1% rise in output was associated with an average 0.85% increase in costs. We were unable to obtain a larger community hospital sample because of the low response rate to our national survey. The case studies identified how rehabilitation was delivered through collaborative, interdisciplinary working; interprofessional communication; and meaningful patient and family engagement. We also developed insight into patients’ recovery trajectories and care transitions. The web-based interactive toolkit was established [http://mocha. nhsbenchmarking.nhs.uk/ (accessed 9 September 2019)]. The crisis response team type of intermediate care, but not community hospitals, had a statistically significant negative association with emergency admissions. Limitations: The econometric analyses were based on cross-sectional data and were also limited by missing data. The low response rate to our national survey means that we cannot extrapolate reliably from our community hospital sample. Conclusions: The results suggest that significant community hospital ward savings may be realised by improving modifiable performance factors that might be augmented further by economies of scale. Future work: How less efficient hospitals might reduce costs and sustain quality requires further research

    Ethyl biodiesels derived from non-edible oils within the biorefinery concept - Pilot scale production & engine emissions

    Get PDF
    Procedures and operating conditions optimized in laboratory scale for the production of ethyl biodiesels from non-edible vegetable oils (NEVOs) were successfully transferred at pilot scale, with implementation of separation and purification stages. The three NEVOs candidates are Balanites aegyptiaca (BA), Azadirachta indica (AI), and Jatropha curcas (JC), converted into BAEEs, AIEEs and JCEEs respectively via homogeneous catalysis. Quality specifications of the produced biofuels were used to explain pollutant emissions and engine performance observed via a power generator. Under the same conditions, blends of petrodiesel with crude BA or JC oil (50 wt.%) were also investigated. The selected overall methodology “feedstock-conversion-engine” led to the proposal of a sustainable alternative fuel. The candidate NEVO is BA oil to which the proposed alkali route should lead to a low cost biodiesel production process thanks to easy operating conditions, associated with a two-stage procedure (glycerol recycling) and a dry-purification method (rice husk ashes). Glycerol addition should be carried out at ambient temperature to play positively at phenomena occurring in the reacting medium (chemical kinetics, chemical equilibrium, phase equilibrium). Tests on power generator demonstrated that BAEEs led to cleaner combustion than petrodiesel, particularly for the most harmful emissions (light carbonyls and ultrafine particulate matter)

    Functional Evidence of Multidrug Resistance Transporters (MDR) in Rodent Olfactory Epithelium

    Get PDF
    Background: P-glycoprotein (Pgp) and multidrug resistance-associated protein (MRP1) are membrane transporter proteins which function as efflux pumps at cell membranes and are considered to exert a protective function against the entry of xenobiotics. While evidence for Pgp and MRP transporter activity is reported for olfactory tissue, their possible interaction and participation in the olfactory response has not been investigated. Principal Findings: Functional activity of putative MDR transporters was assessed by means of the fluorometric calcein acetoxymethyl ester (calcein-AM) accumulation assay on acute rat and mouse olfactory tissue slices. Calcein-AM uptake was measured as fluorescence intensity changes in the presence of Pgp or MRP specific inhibitors. Epifluorescence microscopy measured time course analysis in the olfactory epithelium revealed significant inhibitor-dependent calcein uptake in the presence of each of the selected inhibitors. Furthermore, intracellular calcein accumulation in olfactory receptor neurons was also significantly increased in the presence of either one of the Pgp or MRP inhibitors. The presence of Pgp or MRP1 encoding genes in the olfactory mucosa of rat and mouse was confirmed by RT-PCR with appropriate pairs of speciesspecific primers. Both transporters were expressed in both newborn and adult olfactory mucosa of both species. To assess a possible involvement of MDR transporters in the olfactory response, we examined the electrophysiological response to odorants in the presence of the selected MDR inhibitors by recording electroolfactograms (EOG). In both animal species

    Hip fracture risk in relation to vitamin D supplementation and serum 25-hydroxyvitamin D levels: a systematic review and meta-analysis of randomised controlled trials and observational studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vitamin D supplementation for fracture prevention is widespread despite conflicting interpretation of relevant randomised controlled trial (RCT) evidence. This study summarises quantitatively the current evidence from RCTs and observational studies regarding vitamin D, parathyroid hormone (PTH) and hip fracture risk.</p> <p>Methods</p> <p>We undertook separate meta-analyses of RCTs examining vitamin D supplementation and hip fracture, and observational studies of serum vitamin D status (25-hydroxyvitamin D (25(OH)D) level), PTH and hip fracture. Results from RCTs were combined using the reported hazard ratios/relative risks (RR). Results from case-control studies were combined using the ratio of 25(OH)D and PTH measurements of hip fracture cases compared with controls. Original published studies of vitamin D, PTH and hip fracture were identified through PubMed and Web of Science databases, searches of reference lists and forward citations of key papers.</p> <p>Results</p> <p>The seven eligible RCTs identified showed no significant difference in hip fracture risk in those randomised to cholecalciferol or ergocalciferol supplementation versus placebo/control (RR = 1.13[95%CI 0.98-1.29]; 801 cases), with no significant difference between trials of <800 IU/day and ≥800 IU/day. The 17 identified case-control studies found 33% lower serum 25(OH)D levels in cases compared to controls, based on 1903 cases. This difference was significantly greater in studies with population-based compared to hospital-based controls (χ<sup>2</sup><sub>1 </sub>(heterogeneity) = 51.02, p < 0.001) and significant heterogeneity was present overall (χ<sup>2</sup><sub>16 </sub>(heterogeneity) = 137.9, p < 0.001). Serum PTH levels in hip fracture cases did not differ significantly from controls, based on ten case-control studies with 905 cases (χ<sup>2</sup><sub>9 </sub>(heterogeneity) = 149.68, p < 0.001).</p> <p>Conclusions</p> <p>Neither higher nor lower dose vitamin D supplementation prevented hip fracture. Randomised and observational data on vitamin D and hip fracture appear to differ. The reason for this is unclear; one possible explanation is uncontrolled confounding in observational studies. Post-fracture PTH levels are unrelated to hip fracture risk.</p

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    Get PDF
    Background: We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15–20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in ~ 80% of cases. Methods: We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded. Results: No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5–528.7, P = 1.1 × 10−4) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR = 3.70[95%CI 1.3–8.2], P = 2.1 × 10−4). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR = 19.65[95%CI 2.1–2635.4], P = 3.4 × 10−3), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR = 4.40[9%CI 2.3–8.4], P = 7.7 × 10−8). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD] = 43.3 [20.3] years) than the other patients (56.0 [17.3] years; P = 1.68 × 10−5). Conclusions: Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60&nbsp;years old

    Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.

    Get PDF
    Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage
    corecore