9 research outputs found

    Pests, pesticide use and alternative options in European maize production: current status and future prospects

    Get PDF
    Political efforts are made in the European Union (EU) to reduce pesticide use and to increase the implementation of integrated pest management (IPM). Within the EU project ENDURE, research priorities on pesticide reduction are defined. Using maize, one of the most important crops in Europe, as a case study, we identified the most serious weeds, arthropod pests, and fungal diseases as well as classes and amounts of pesticides applied. Data for 11 European maize growing regions were collected from databases, publications and expert estimates. Silage maize dominates in northern Europe and grain production in central and southern Europe. Crop rotations range from continuous growing of maize over several years to well-planned rotation systems. Weeds, arthropod pests and fungal diseases cause economic losses in most regions, even though differences exist between northern countries and central and southern Europe. Several weed and arthropod species cause increasing problems, illustrating that the goal of reducing chemical pesticide applications is challenging. Pesticides could potentially be reduced by the choice of varieties including genetically modified hybrids, cultural control including crop rotation, biological control, optimized application techniques for chemicals, and the development of more specific treatments. However, restrictions in the availability of alternative pest control measures, farm organization, and the training and knowledge of farmers need to be overcome before the adoption of environmentally friendly pest control strategies can reduce chemical pesticides in an economically competitive way. The complex of several problems that need to be tackled simultaneously and the link between different control measures demonstrates the need for IPM approaches, where pest control is seen in the context of the cropping system and on a regional scale. Multicriteria assessments and decision support systems combined with pest monitoring programs may help to develop region-specific and sustainable strategies that are harmonized within a EU framework

    Multi-phenotype analyses of hemostatic traits with cardiovascular events reveal novel genetic associations

    Get PDF
    Background: Multi-phenotype analysis of genetically correlated phenotypes can increase the statistical power to detect loci associated with multiple traits, leading to the discovery of novel loci. This is the first study to date to comprehensively analyze the shared genetic effects within different hemostatic traits, and between these and their associated disease outcomes. Objectives: To discover novel genetic associations by combining summary data of correlated hemostatic traits and disease events. Methods: Summary statistics from genome wide-association studies (GWAS) from seven hemostatic traits (factor VII [FVII], factor VIII [FVIII], von Willebrand factor [VWF] factor XI [FXI], fibrinogen, tissue plasminogen activator [tPA], plasminogen activator inhibitor 1 [PAI-1]) and three major cardiovascular (CV) events (venous thromboembolism [VTE], coronary artery disease [CAD], ischemic stroke [IS]), were combined in 27 multi-trait combinations using metaUSAT. Genetic correlations between phenotypes were calculated using Linkage Disequilibrium Score Regression (LDSC). Newly associated loci were investigated for colocalization. We considered a significance threshold of 1.85 × 10−9 obtained after applying Bonferroni correction for the number of multi-trait combinations performed (n = 27). Results: Across the 27 multi-trait analyses, we found 4 novel pleiotropic loci (XXYLT1, KNG1, SUGP1/MAU2, TBL2/MLXIPL) that were not significant in the original individual datasets, were not described in previous GWAS for the individual traits, and that presented a common associated variant between the studied phenotypes. Conclusions: The discovery of four novel loci contributes to the understanding of the relationship between hemostasis and CV events and elucidate common genetic factors between these traits

    Complete Nucleotide Sequence of a French Isolate of Maize rough dwarf virus, a Fijivirus Member in the Family Reoviridae.

    No full text
    The complete nucleotide sequence of a French isolate of Maize rough dwarf virus (MRDV) was determined by next-generation sequencing and compared with the single available complete sequence and with the partial sequences of two additional isolates available in online databases

    Trends among platelet function, arterial calcium, and vascular function measures

    No full text
    Arterial tonometry and vascular calcification measures are useful in cardiovascular disease (CVD) risk assessment. Prior studies found associations between tonometry measures, arterial calcium, and CVD risk. Activated platelets release angiopoietin-1 and other factors, which may connect vascular structure and platelet function. We analyzed arterial tonometry, platelet function, aortic, thoracic and coronary calcium, and thoracic and abdominal aorta diameters measured in the Framingham Heart Study Gen3/NOS/OMNI-2 cohorts (n = 3,429, 53.7% women, mean age 54.4 years ±9.3). Platelet reactivity in whole blood or platelet-rich plasma was assessed using 5 assays and 7 agonists. We analyzed linear mixed effects models with platelet reactivity phenotypes as outcomes, adjusting for CVD risk factors and family structure. Higher arterial calcium trended with higher platelet reactivity, whereas larger aortic diameters trended with lower platelet reactivity. Characteristic impedance (Zc) and central pulse pressure positively trended with various platelet traits, while pulse wave velocity and Zc negatively trended with collagen, ADP, and epinephrine traits. All results did not pass a stringent multiple test correction threshold (p < 2.22e-04). The diameter trends were consistent with lower shear environments invoking less platelet reactivity. The vessel calcium trends were consistent with subclinical atherosclerosis and platelet activation being inter-related

    Agroecological transformation for sustainable food systems : Insight on France-CGIAR research

    No full text
    This 26th dossier d’Agropolis is devoted to research and partnerships in agroecology. The French Commission for International Agricultural Research (CRAI) and Agropolis International, on behalf of CIRAD, INRAE and IRD and in partnership with CGIAR, has produced this new issue in the ‘Les dossiers d’Agropolis international’ series devoted to agroecology. This publication has been produced within the framework of the Action Plan signed by CGIAR and the French government on February 4th 2021 to strengthen French collaboration with CGIAR, where agroecology is highlighted as one of the three key priorities (alongside climate change, nutrition and food systems)

    Cross-ancestry investigation of venousc genomic predictors

    Get PDF
    Background: Venous thromboembolism (VTE) is a life-threatening vascular event with environmental and genetic determinants. Recent VTE genome-wide association studies (GWAS) meta-analyses involved nearly 30 000 VTE cases and identified up to 40 genetic loci associated with VTE risk, including loci not previously suspected to play a role in hemostasis. The aim of our research was to expand discovery of new genetic loci associated with VTE by using cross-ancestry genomic resources. Methods: We present new cross-ancestry meta-analyzed GWAS results involving up to 81 669 VTE cases from 30 studies, with replication of novel loci in independent populations and loci characterization through in silico genomic interrogations. Results: In our genetic discovery effort that included 55 330 participants with VTE (47 822 European, 6320 African, and 1188 Hispanic ancestry), we identified 48 novel associations, of which 34 were replicated after correction for multiple testing. In our combined discovery-replication analysis (81 669 VTE participants) and ancestry-stratified meta-analyses (European, African, and Hispanic), we identified another 44 novel associations, which are new candidate VTE-associated loci requiring replication. In total, across all GWAS meta-analyses, we identified 135 independent genomic loci significantly associated with VTE risk. A genetic risk score of the significantly associated loci in Europeans identified a 6-fold increase in risk for those in the top 1% of scores compared with those with average scores. We also identified 31 novel transcript associations in transcriptome-wide association studies and 8 novel candidate genes with protein quantitative-trait locus Mendelian randomization analyses. In silico interrogations of hemostasis and hematology traits and a large phenome-wide association analysis of the 135 GWAS loci provided insights to biological pathways contributing to VTE, with some loci contributing to VTE through well-characterized coagulation pathways and others providing new data on the role of hematology traits, particularly platelet function. Many of the replicated loci are outside of known or currently hypothesized pathways to thrombosis. Conclusions: Our cross-ancestry GWAS meta-analyses identified new loci associated with VTE. These findings highlight new pathways to thrombosis and provide novel molecules that may be useful in the development of improved antithrombosis treatments

    Multi-phenotype analyses of hemostatic traits with cardiovascular events reveal novel genetic associations

    Get PDF
    Background: Multi-phenotype analysis of genetically correlated phenotypes can increase the statistical power to detect loci associated with multiple traits, leading to the discovery of novel loci. This is the first study to date to comprehensively analyze the shared genetic effects within different hemostatic traits, and between these and their associated disease outcomes. Objectives: To discover novel genetic associations by combining summary data of correlated hemostatic traits and disease events. Methods: Summary statistics from genome wide-association studies (GWAS) from seven hemostatic traits (factor VII [FVII], factor VIII [FVIII], von Willebrand factor [VWF] factor XI [FXI], fibrinogen, tissue plasminogen activator [tPA], plasminogen activator inhibitor 1 [PAI-1]) and three major cardiovascular (CV) events (venous thromboembolism [VTE], coronary artery disease [CAD], ischemic stroke [IS]), were combined in 27 multi-trait combinations using metaUSAT. Genetic correlations between phenotypes were calculated using Linkage Disequilibrium Score Regression (LDSC). Newly associated loci were investigated for colocalization. We considered a significance threshold of 1.85 × 10−9 obtained after applying Bonferroni correction for the number of multi-trait combinations performed (n = 27). Results: Across the 27 multi-trait analyses, we found 4 novel pleiotropic loci (XXYLT1, KNG1, SUGP1/MAU2, TBL2/MLXIPL) that were not significant in the original individual datasets, were not described in previous GWAS for the individual traits, and that presented a common associated variant between the studied phenotypes. Conclusions: The discovery of four novel loci contributes to the understanding of the relationship between hemostasis and CV events and elucidate common genetic factors between these traits
    corecore