3,138 research outputs found

    Accuracy and effectualness of closed-form, frequency-domain waveforms for non-spinning black hole binaries

    Full text link
    The coalescences of binary black hole (BBH) systems, here taken to be non-spinning, are among the most promising sources for gravitational wave (GW) ground-based detectors, such as LIGO and Virgo. To detect the GW signals emitted by BBHs, and measure the parameters of the source, one needs to have in hand a bank of GW templates that are both effectual (for detection), and accurate (for measurement). We study the effectualness and the accuracy of the two types of parametrized banks of templates that are directly defined in the frequency-domain by means of closed-form expressions, namely 'post-Newtonian' (PN) and 'phenomenological' models. In absence of knowledge of the exact waveforms, our study assumes as fiducial, target waveforms the ones generated by the most accurate version of the effective one body (EOB) formalism. We find that, for initial GW detectors the use, at each point of parameter space, of the best closed-form template (among PN and phenomenological models) leads to an effectualness >97% over the entire mass range and >99% in an important fraction of parameter space; however, when considering advanced detectors, both of the closed-form frequency-domain models fail to be effectual enough in significant domains of the two-dimensional [total mass and mass ratio] parameter space. Moreover, we find that, both for initial and advanced detectors, the two closed-form frequency-domain models fail to satisfy the minimal required accuracy standard in a very large domain of the two-dimensional parameter space. In addition, a side result of our study is the determination, as a function of the mass ratio, of the maximum frequency at which a frequency-domain PN waveform can be 'joined' onto a NR-calibrated EOB waveform without undue loss of accuracy.Comment: 29 pages, 8 figures, 1 table. Accepted for publication in Phys. Rev.

    Inflation without Slow Roll

    Full text link
    We draw attention to the possibility that inflation (i.e. accelerated expansion) might continue after the end of slow roll, during a period of fast oscillations of the inflaton field \phi . This phenomenon takes place when a mild non-convexity inequality is satisfied by the potential V(\phi). The presence of such a period of \phi-oscillation-driven inflation can substantially modify reheating scenarios. In some models the effect of these fast oscillations might be imprinted on the primordial perturbation spectrum at cosmological scales.Comment: 9 pages, Revtex, psfig, 1 figure, minor modifications, references adde

    Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon

    Full text link
    The mechanisms of ripple formation on silicon surface by femtosecond laser pulses are investigated. We demonstrate the transient evolution of the density of the excited free-carriers. As a result, the experimental conditions required for the excitation of surface plasmon polaritons are revealed. The periods of the resulting structures are then investigated as a function of laser parameters, such as the angle of incidence, laser fluence, and polarization. The obtained dependencies provide a way of better control over the properties of the periodic structures induced by femtosecond laser on the surface of a semiconductor material.Comment: 11 pages, 8 figures, accepted for publication in Journal of Applied Physic

    Quantifying intermittent transport in cell cytoplasm

    Full text link
    Active cellular transport is a fundamental mechanism for protein and vesicle delivery, cell cycle and molecular degradation. Viruses can hijack the transport system and use it to reach the nucleus. Most transport processes consist of intermittent dynamics, where the motion of a particle, such as a virus, alternates between pure Brownian and directed movement along microtubules. In this communication, we estimate the mean time for particle to attach to a microtubule network. This computation leads to a coarse grained equation of the intermittent motion in radial and cylindrical geometries. Finally, by using the degradation activity inside the cytoplasm, we obtain refined asymptotic estimations for the probability and the mean time a virus reaches a small nuclear pore.Comment: 4 pages, 5 figures accepted as rapid communication in Phys. Rev.

    Photon rockets and gravitational radiation

    Full text link
    The absence of gravitational radiation in Kinnersley's ``photon rocket'' solution of Einstein's equations is clarified by studying the mathematically well-defined problem of point-like photon rockets in Minkowski space (i.e. massive particles emitting null fluid anisotro\-pically and accelerating because of the recoil). We explicitly compute the (uniquely defined) {\it linearized} retarded gravitational waves emitted by such objects, which are the coherent superposition of the gravitational waves generated by the motion of the massive point-like rocket and of those generated by the energy-momentum distribution of the photon fluid. In the special case (corresponding to Kinnersley's solution) where the anisotropy of the photon emission is purely dipolar we find that the gravitational wave amplitude generated by the energy-momentum of the photons exactly cancels the usual 1/r1/r gravitational wave amplitude generated by the accelerated motion of the rocket. More general photon anisotropies would, however, generate genuine gravitational radiation at infinity. Our explicit calculations show the compatibility between the non-radiative character of Kinnersley's solution and the currently used gravitational wave generation formalisms based on post-Minkowskian perturbation theory.Comment: 21 pages, LATEX, submitted to Class. Quant. Gra

    Quantum effects in gravitational wave signals from cuspy superstrings

    Get PDF
    We study the gravitational emission, in Superstring Theory, from fundamental strings exhibiting cusps. The classical computation of the gravitational radiation signal from cuspy strings features strong bursts in the special null directions associated to the cusps. We perform a quantum computation of the gravitational radiation signal from a cuspy string, as measured in a gravitational wave detector using matched filtering and located in the special null direction associated to the cusp. We study the quantum statistics (expectation value and variance) of the measured filtered signal and find that it is very sharply peaked around the classical prediction. Ultimately, this result follows from the fact that the detector is a low-pass filter which is blind to the violent high-frequency quantum fluctuations of both the string worldsheet, and the incoming gravitational field.Comment: 16 pages, no figur

    Gravitational Recoil during Binary Black Hole Coalescence using the Effective One Body Approach

    Full text link
    Using the Effective One Body approach, that includes nonperturbative resummed estimates for the damping and conservative parts of the compact binary dynamics, we compute the recoil during the late inspiral and the subsequent plunge of non-spinning black holes of comparable masses moving in quasi-circular orbits. Further, using a prescription that smoothly connects the plunge phase to a perturbed single black hole, we obtain an estimate for the total recoil associated with the binary black hole coalescence. We show that the crucial physical feature which determines the magnitude of the terminal recoil is the presence of a ``burst'' of linear momentum flux emitted slightly before coalescence. When using the most natural expression for the linear momentum flux during the plunge, together with a Taylor-expanded (v/c)4(v/c)^4 correction factor, we find that the maximum value of the terminal recoil is 74\sim 74 km/s and occurs for a mass ratio m2/m10.38m_2/m_1 \simeq 0.38. We comment, however, on the fact that the above `best bet estimate' is subject to strong uncertainties because the location and amplitude of the crucial peak of linear momentum flux happens at a moment during the plunge where most of the simplifying analytical assumptions underlying the Effective One Body approach are no longer justified. Changing the analytical way of estimating the linear momentum flux, we find maximum recoils that range between 49 and 172 km/s. (Abridged)Comment: 46 pages, new figures and discussions, to appear in PR

    Light deflection by gravitational waves from localized sources

    Get PDF
    We study the deflection of light (and the redshift, or integrated time delay) caused by the time-dependent gravitational field generated by a localized material source lying close to the line of sight. Our calculation explicitly takes into account the full, near-zone, plus intermediate-zone, plus wave-zone, retarded gravitational field. Contrary to several recent claims in the literature, we find that the deflections due to both the wave-zone 1/r gravitational wave and the intermediate-zone 1/r^2 retarded fields vanish exactly. The leading total time-dependent deflection caused by a localized material source, such as a binary system, is proven to be given by the quasi-static, near-zone quadrupolar piece of the gravitational field, and therefore to fall off as the inverse cube of the impact parameter.Comment: 12 pages, REVTeX 3.0, no figur

    The Shaken Baby Syndrome: A Clinical, Pathological, and Biomechanical Study

    Get PDF
    Because a history of shaking is often lacking in the so-called “shaken baby syndrome,” diagnosis is usually based on a constellation of clinical and radiographic findings. Forty-eight cases of infants and young children with this diagnosis seen between 1978 and 1985 at the Children\u27s Hospital of Philadelphia were reviewed. All patients had a presenting history thought to be suspicious for child abuse, and either retinal hemorrhages with subdural or subarachnoid hemorrhages or a computerized tomography scan showing subdural or subarachnoid hemorrhages with interhemispheric blood. The physical examination and presence of associated trauma were analyzed; autopsy findings for the 13 fatalities were reviewed. All fatal cases had signs of blunt impact to the head, although in more than half of them these findings were noted only at autopsy. All deaths were associated with uncontrollably increased intracranial pressure. Models of 1-month-old infants with various neck and skull parameters were instrumented with accelerometers and shaken and impacted against padded or unpadded surfaces. Angular accelerations for shakes were smaller than those for impacts by a factor of 50. All shakes fell below injury thresholds established for subhuman primates scaled for the same brain mass, while impacts spanned concussion, subdural hematoma, and diffuse axonal injury ranges. It was concluded that severe head injuries commonly diagnosed as shaking injuries require impact to occur and that shaking alone in an otherwise normal baby is unlikely to cause the shaken baby syndrome

    Inelastic collisions in molecular nitrogen at low temperature (2<T<50 K)

    Get PDF
    Theory and experiment are combined in a novel approach aimed at establishing a set of two-body state-to-state rates for elementary processes ij->lm in low temperature N2:N2 collisions involving the rotational states i, j, l, m. First, a set of 148 collision cross sections is calculated as a function of the collision energy at the converged close-coupled level via the MOLSCAT code, using a recent potential energy surface for N2–N2. Then, the corresponding rates for the range of 2<T<50 K are derived from the cross sections. The link between theory and experiment, aimed at assessing the calculated rates, is a master equation which accounts for the time evolution of rotational populations in a reference volume of gas in terms of the collision rates. In the experiment, the evolution of rotational populations is measured by Raman spectroscopy in a tiny reference volume 2E-3 mm3 of N2 traveling along the axis of a supersonic jet. The calculated collisional rates are assessed experimentally in the range of 4<T<35 K by means of the master equation, and then are scaled by averaging over a large set of experimental data. The scaled rates account accurately for the evolution of the rotational populations measured in a wide range of conditions. Accuracy of 10% is estimated for the main scaled rates.This work has been supported by the Spanish Ministerio de Educación y Ciencia, research Project Nos. FIS2004-02576, HF2004-232, ESP2004-21060-E, and ASTROCAM network. J.P.F. is indebted to the CSIC for an I3P grant.Peer reviewe
    corecore