48 research outputs found

    TiO2 Nanoparticles Are Phototoxic to Marine Phytoplankton

    Get PDF
    Nanoparticulate titanium dioxide (TiO2) is highly photoactive, and its function as a photocatalyst drives much of the application demand for TiO2. Because TiO2 generates reactive oxygen species (ROS) when exposed to ultraviolet radiation (UVR), nanoparticulate TiO2 has been used in antibacterial coatings and wastewater disinfection, and has been investigated as an anti-cancer agent. Oxidative stress mediated by photoactive TiO2 is the likely mechanism of its toxicity, and experiments demonstrating cytotoxicity of TiO2 have used exposure to strong artificial sources of ultraviolet radiation (UVR). In vivo tests of TiO2 toxicity with aquatic organisms have typically shown low toxicity, and results across studies have been variable. No work has demonstrated that photoactivity causes environmental toxicity of TiO2 under natural levels of UVR. Here we show that relatively low levels of ultraviolet light, consistent with those found in nature, can induce toxicity of TiO2 nanoparticles to marine phytoplankton, the most important primary producers on Earth. No effect of TiO2 on phytoplankton was found in treatments where UV light was blocked. Under low intensity UVR, ROS in seawater increased with increasing nano-TiO2 concentration. These increases may lead to increased overall oxidative stress in seawater contaminated by TiO2, and cause decreased resiliency of marine ecosystems. Phototoxicity must be considered when evaluating environmental impacts of nanomaterials, many of which are photoactive

    The mother-to-child HIV transmission debate

    Get PDF
    CITATION: Hussey, G. et al. 1999. The mother-to-child HIV transmission debate. South African Medical Journal, 89(2):103-104.The original publication is available at http://www.samj.org.za[No abstract available]Publisher’s versio

    Can selenium‐enriched spirulina supplementation ameliorate sepsis outcomes in selenium‐deficient animals?

    No full text
    In intensive care units, sepsis is the first cause of death. In this pathology, inflammation and oxidative status play a crucial role in patient outcomes. Interestingly, 92% of septic patients exhibit low selenium plasma concentrations (a component of antioxidant enzymes). Moreover, Spirulina platensis, a blue-green algae, demonstrated anti-inflammatory effects. In this context, the main purpose of our study was to analyze the effect of a selenium-enriched spirulina after a selenium deficiency on sepsis outcome in rats. Sixty-four rats were fed 12 weeks with a selenium-deficient food. After 8 weeks, rats were supplemented (via drinking water) for 4 weeks with sodium selenite (Se), spirulina (Spi), or selenium-enriched spirulina (SeSp). Sepsis was then induced by cecal ligature and puncture, and survival duration was observed. The plasma selenium concentration was measured by ICPMS. Expression of GPx1 and GPx3 mRNA was measured by RT-PCR. Blood parameters (lactates and HCO3− concentrations, pH, PO2, and PCO2) were analyzed at 0, 1, and 2 h as well as inflammatory cytokines (IL-6, TNF-α, IL-10). Sodium selenite and SeSP supplementations restored plasma selenium concentration prior to sepsis. The survival duration of SeSP septic rats was significantly lower than that of selenium-supplemented ones. Gpx1 mRNA was increased after a selenium-enriched spirulina supplementation while Gpx3 mRNA levels remained unchanged. Furthermore, sodium selenite prevented sepsis-induced acidosis. Our results show that on a basis of a Se deficiency, selenium-enriched spirulina supplementations significantly worsen sepsis outcome when compared to Se supplementation. Furthermore, Se supplementation but not selenium-enriched spirulina supplementation decreased inflammation and restored acid–base equilibrium after a sepsis induction

    Identification and Molecular Characterization of Shamonda Virus in an Aborted Goat Fetus in South Africa

    No full text
    Viruses in the Orthobunyavirus genus, Peribunyaviridae family, are associated with encephalitis, birth defects and fatalities in animals, and some are zoonotic. Molecular diagnostic investigations of animals with neurological signs previously identified Shuni virus (SHUV) as the most significant orthobunyavirus in South Africa (SA). To determine if other orthobunyaviruses occur in SA, we screened clinical specimens from animals with neurological signs, abortions, and acute deaths from across SA in 2021 using a small (S) segment Simbu serogroup specific TaqMan real-time reverse transcription polymerase chain reaction (RT-PCR). Positive cases were subjected to Sanger sequencing and phylogenetic analysis to identify specific viruses involved, followed by next-generation sequencing (NGS) and additional PCR assays targeting the medium (M) segment and the large (L) segment. In total, 3/172 (1.7%) animals were PCR positive for Simbu serogroup viruses, including two horses with neurological signs and one aborted goat fetus in 2021. Phylogenetic analyses confirmed that the two horses were infected with SHUV strains with nucleotide pairwise (p-) distances of 98.1% and 97.6% to previously identified strains, while the aborted goat fetus was infected with a virus closely related to Shamonda virus (SHAV) with nucleotide p-distances between 94.7% and 91.8%. Virus isolation was unsuccessful, likely due to low levels of infectious particles. However, phylogenetic analyses of a larger fragment of the S segment obtained through NGS and partial sequences of the M and L segments obtained through RT-PCR and Sanger sequencing confirmed that the virus is likely SHAV with nucleotide p-distances between 96.6% and 97.8%. This is the first detection of SHAV in an aborted animal in SA and suggests that SHAV should be considered in differential diagnosis for abortion in animals in Southern Africa
    corecore