987 research outputs found

    Perylene as an Organic Photocatalyst for the Radical Polymerization of Functionalized Vinyl Monomers through Oxidative Quenching with Alkyl Bromides and Visible Light

    Get PDF
    The generation of carbon-centered radicals from alkyl bromides through an oxidative quenching pathway using perylene as an organic visible-light photocatalyst is described. This methodology is used to initiate the radical polymerization of methyl methacrylate and other functionalized vinyl monomers. The polymers possess bromide chain-end groups that can be used to reinitiate polymerization to produce block copolymers. Control over the polymerization propagation can be achieved through pulsed light sequences while the ability to use natural sunlight to promote carbon–carbon bond formation produces polymers with dispersity as low as 1.29

    Response and Discrimination Performance of Arrays of Organothiol-Capped Au Nanoparticle Chemiresistive Vapor Sensors

    Get PDF
    The response and discrimination performance of an array that consisted of 20 different organothiol-capped Au nanoparticle chemiresistive vapor sensors was evaluated during exposure to 13 different organic vapors. The passivating organothiol ligand library consisted of collections of straight-chain alkanethiols, branched alkanethiols, and aromatic thiols. A fourth collection of sensors was formed from composites of 2-phenylethanethiol-capped Au nanoparticles and nonpolymeric aromatic materials that were coembedded in a sensor film. The organic vapors consisted of six hydrocarbons (n-hexane, n-heptane, n-octane, isooctane, cyclohexane, and toluene), three polar aprotic vapors (chloroform, tetrahydrofuran, and ethyl acetate), and four alcohols (methanol, ethanol, isopropanol, and 1-butanol). Trends in the resistance response of the sensors were consistent with expected trends in sorption due to the properties of the test vapor and the molecular structure of the passivating ligands in the sensor films. Classification algorithms including principal components analysis and Fisher’s linear discriminant were used to evaluate the discrimination performance of an array of such sensors. Each collection of sensors produced accurate classification of most vapors, with misclassification occurring primarily for vapors that had mutually similar polarity. The classification performance for an array that contained all of the sensor collections produced nearly perfect discrimination for all vapors studied. The dependence of the array size (i.e., the number of sensors) and the array chemical diversity on the discrimination performance indicated that, for an array of 20 sensors, an array size of 13 sensors or more produced the maximum discrimination performance

    Chromosomal Loci Move Subdiffusively Through a Viscoelastic Cytoplasm

    Get PDF

    Chronic Lunar Dust Exposure on Rat Cornea: Evaluation by Gene Expression Profiling

    Get PDF
    Lunar dust is capable of entering habitats and vehicle compartments by sticking to spacesuits or other objects that are transferred into the spacecraft from the lunar surface and has been reported to cause irritation upon exposure. During the Apollo missions, crewmembers reported irritation specifically to the skin and eyes after contamination of the lunar and service modules. It has since been hypothesized that ocular irritation and abrasion might occur as a result of such exposure, impairing crew vision. Recent work has shown that both ultrafine and unground lunar dust exhibited minimal irritancy of the ocular surface (i.e., cornea); however, the assessment of the severity of ocular damage resulting from contact of lunar dust particles to the cornea has focused only on macroscopic signs of mechanical irritancy and cytotoxicity. Given the chemical reactive properties of lunar dust, exposure of the cornea may contribute to detrimental effects at the molecular level including but not limited to oxidative damage. Additionally, low level chronic exposures may confound any results obtained in previous acute studies. We report here preliminary results from a tissue sharing effort using 10weekold Fischer 344 male rats chronically exposed to filtered air or jet milled lunar dust collected during Apollo 14 using a JaegerNYU noseonly chamber for a total of 120 hours (6 hours daily, 5 days a week) over a 4week period. RNA was isolated from corneas collected from rats at 1 day and 7 days after being exposed to concentrations of 0, 20, and 60 mg/m3 of lunar dust. Microarray analysis was performed using the Affymetrix GeneChip Rat Genome 230 2.0 Array with Affymetrix Expression Console and Transcriptome Analysis Console used for normalization and secondary analysis. An Ingenuity iReport"TM" was then generated for canonical pathway identification. The number of differentially expressed genes identified increases with dose compared to controls suggesting a more severe response to the lunar dust insult at higher levels. Pathways of interests that have been identified in all exposed samples include oxidative stress response, mitochondrial dysfunction, fibrosis, epithelial healing, TGF-Beta signaling, and extracellular matrix remodeling. Several biological processes related to cell migration, cellular proliferation, and eye development were also identified to be altered by exposure to lunar dust. Our preliminary results suggest that even a chronic insult of lunar dust as low as 20 mg/m(exp 3) elicits a molecular response in cornea tissue. Lunar dust on the surface of the moon would have the added properties of ionization and activation potentially leading to further damage to the cornea and greater sensitivity to any other environmental insult such as exposure to radiation. Additional studies are required to fully assess the risk of vision impairment and the mechanistic responses initiated in cornea exposed to lunar dust as well as the potential for longterm effects to astronaut healt

    Radioadaptive Cytoprotective Pathways in the Mouse Retina

    Get PDF
    Exposure to cosmic radiation implies a risk of tissue degeneration. Radiation retinopathy is a complication of radiotherapy and exhibits common features with other retinopathies and neuropathies. Exposure to a low radiation dose elicits protective cellular events (radioadaptive response), reducing the stress of a subsequent higher dose. To assess the risk of radiation-induced retinal changes and the extent to which a small priming dose reduces this risk, we used a mouse model exposed to a source of Cs-137-gamma radiation. Gene expression profiling of retinas from non-irradiated control C57BL/6J mice (C) were compared to retinas from mice treated with a low 50 mGy dose (LD), a high 6 Gy dose (HD), and a combined treatment of 50 mGy (priming) and 6 Gy (challenge) doses (LHD). Whole retina RNA was isolated and expression analysis for selected genes performed by RTqPCR. Relevant target genes associated with cell death/survival, oxidative stress, cellular stress response and inflammation pathways, were analyzed. Cellular stress response genes were upregulated at 4 hr after the challenge dose in LHD retinas (Sirt1: 1.5 fold, Hsf1: 1.7 fold, Hspa1a: 2.5 fold; Hif1a: 1.8 fold, Bag1: 1.7). A similar trend was observed in LD animals. Most antioxidant enzymes (Hmox1, Sod2, Prdx1, Cygb, Cat1) and inflammatory mediators (NF B, Ptgs2 and Tgfb1) were upregulated in LHD and LD retinas. Expression of the pro-survival gene Bcl2 was upregulated in LD (6-fold) and LHD (4-fold) retinas. In conclusion, cytoprotective gene networks activation in the retina suggests a radioadaptive response to a priming irradiation dose, with mitigation of the deleterious effects of a subsequent high dose exposure. The enhancement of these cytoprotective mechanisms has potential value as a countermeasure to ocular alterations caused by radiation alone or in combination with other factors in spaceflight environments

    Curved Tails in Polymerization-Based Bacterial Motility

    Full text link
    The curved actin ``comet-tail'' of the bacterium Listeria monocytogenes is a visually striking signature of actin polymerization-based motility. Similar actin tails are associated with Shigella flexneri, spotted-fever Rickettsiae, the Vaccinia virus, and vesicles and microspheres in related in vitro systems. We show that the torque required to produce the curvature in the tail can arise from randomly placed actin filaments pushing the bacterium or particle. We find that the curvature magnitude determines the number of actively pushing filaments, independent of viscosity and of the molecular details of force generation. The variation of the curvature with time can be used to infer the dynamics of actin filaments at the bacterial surface.Comment: 8 pages, 2 figures, Latex2

    Hindlimb Suspension (HLS) in Rodents for the Study of Intracranial Pressure, Molecular and Histologic Changes in the Eye, and CSF Production Regulation and Resorption: A Status Report of Two Studies

    Get PDF
    This status report corresponds to two studies tied to an animal experiment being executed at the University of California Davis (Charles Fuller's laboratory). The animal protocol uses the well-documented rat hindlimb suspension (HLS) model, to examine the relationship between cephalic fluid shifts and the regulation of intracranial (ICP) and intraocular (IOP) pressures as well as visual system structure and function. Long Evans rats are subjected to HLS durations of 7, 14, 28 and 90 days. Subgroups of the 90-day animals are studied for recovery periods of 7, 14, 28 or 90 days. All HLS subjects have age-matched cage controls. Various animal cohorts are planned for this study: young males, young females and old males. In addition to the live measures (ICP by telemetry, IOP and retinal parameters by optical coherence tomography) which are shared with the Fuller study, the specific outcomes for this study include: -Gene expression analysis of the retina -Histologic analysis - Analysis of the microvasculature of retina flat mounts by NASA's VESsel GENeration Analysis (VESGEN) Software. To date, the young male and female cohorts are being completed. Due to the need to keep technical variation to a minimum, the histologic and genomic analyses have been delayed until all samples from each cohort are available and can be processed in a single batch per cohort. The samples received so far correspond to young males sacrificed at 7,14, 28 and 90 days of HLS and at 90 days of recovery; and from young females sacrificed at 7, 14 and 28 of HLS. A complementary study titled: "A gene expression and histologic approach to the study of cerebrospinal fluid (CSF) production and outflow in hindlimb suspended rats" seeks to study the molecular components of CSF production and outflow modulation as a result of HLS, bringing a molecular and histologic approach to investigate genome wide expression changes in the arachnoid villi and choroid plexus of HLS rats compared to rats in normal posture

    The taxonomy and diversity of Proschkinia (Bacillariophyta), a common but enigmatic genus from marine coasts

    Get PDF
    Detailed morphological documentation is provided for established Proschkinia taxa, including the generitype, P. bulnheimii, and P. complanata, P. complanatula, P. complanatoides and P. hyalosirella, and six new species. All established taxa are characterized from original material from historical collections. The new species described in this paper (P. luticola, P. staurospeciosa, P. impar, P. modesta, P. fistulispectabilis, and P. rosowskii) were isolated from the Western Pacific (Yellow Sea coast of Korea) and the Atlantic (Scottish and Texas coasts). Thorough documentation of the frustule, valve and protoplast architecture revealed the combination of characters diagnostic of the genus Proschkinia: a single‐lobed chloroplast; a broad girdle composed of U‐shaped, perforated bands; the position of the conopeate raphe‐sternum relative to the external and internal valve surface; and the presence of an occluded process through the valve, termed the “fistula”. Seven strains of Proschkinia were grown in culture and five of these were sequenced for nuclear ribosomal SSU and plastid‐encoded rbcL. Phylogenetic analysis recovered a clade of Proschkinia with Fistulifera, another fistula‐bearing diatom genus, and together these were sister to a clade formed of the Stauroneidaceae; in turn, all of these were sister to a clade composed of Parlibellus and two monoraphid genera Astartiella and Schizostauron. Despite morphological similarities between Proschkinia and the Naviculaceae, these two taxa are distant in our analysis. We document the variation in the morphology of Proschkinia, including significant variability in the fistula, suggesting that fistula ultrastructure might be one of the key features for species identification within the genus.info:eu-repo/semantics/acceptedVersio

    Placental syncytiotrophoblast constitutes a major barrier to vertical transmission of Listeria monocytogenes.

    Get PDF
    Listeria monocytogenes is an important cause of maternal-fetal infections and serves as a model organism to study these important but poorly understood events. L. monocytogenes can infect non-phagocytic cells by two means: direct invasion and cell-to-cell spread. The relative contribution of each method to placental infection is controversial, as is the anatomical site of invasion. Here, we report for the first time the use of first trimester placental organ cultures to quantitatively analyze L. monocytogenes infection of the human placenta. Contrary to previous reports, we found that the syncytiotrophoblast, which constitutes most of the placental surface and is bathed in maternal blood, was highly resistant to L. monocytogenes infection by either internalin-mediated invasion or cell-to-cell spread. Instead, extravillous cytotrophoblasts-which anchor the placenta in the decidua (uterine lining) and abundantly express E-cadherin-served as the primary portal of entry for L. monocytogenes from both extracellular and intracellular compartments. Subsequent bacterial dissemination to the villous stroma, where fetal capillaries are found, was hampered by further cellular and histological barriers. Our study suggests the placenta has evolved multiple mechanisms to resist pathogen infection, especially from maternal blood. These findings provide a novel explanation why almost all placental pathogens have intracellular life cycles: they may need maternal cells to reach the decidua and infect the placenta

    Tightness of slip-linked polymer chains

    Get PDF
    We study the interplay between entropy and topological constraints for a polymer chain in which sliding rings (slip-links) enforce pair contacts between monomers. These slip-links divide a closed ring polymer into a number of sub-loops which can exchange length between each other. In the ideal chain limit, we find the joint probability density function for the sizes of segments within such a slip-linked polymer chain (paraknot). A particular segment is tight (small in size) or loose (of the order of the overall size of the paraknot) depending on both the number of slip-links it incorporates and its competition with other segments. When self-avoiding interactions are included, scaling arguments can be used to predict the statistics of segment sizes for certain paraknot configurations.Comment: 10 pages, 6 figures, REVTeX
    corecore