226 research outputs found

    Multivariate reciprocal stationary Gaussian processes

    Get PDF
    AbstractIn this paper we examine the characterization of multivariate reciprocal stationary Gaussian processes in terms of their covariance matrix function. As an illustration, we identify all second-order reciprocal Gaussian processes

    Manipulation of gene expression by an ecdysone-inducible gene switch in tumor xenografts

    Get PDF
    BACKGROUND: Rapid, robust and reversible induction of transgene expression would significantly facilitate cancer gene therapy as well as allow the in vivo functional study of newly discovered genes in tumor formation and progression. The popularity of the ecdysone inducible gene switch system has led us to investigate whether such a system can successfully regulate gene expression in a syngeneic tumor system in vivo. RESULTS: MBT-2 and Panc02 carcinoma cells were transfected with components of a modification of the ecdysone switch system driving firefly luciferase (F-Luc). In vitro luciferase expression ± ecdysone analog GS-E indicated a robust induction with minimal baseline activity and complete decay after 24 hours without drug. In vitro selection of MBT-2 transfected cell clones which had complete absence of F-Luc expression in the absence of stimulation but which expressed this gene at high levels in response to GS-E were chosen for in vivo evaluation. Tumors from engineered MBT-2 cells were grown to 5 mm in diameter prior to GS-E administration, animals euthanized and tumors removed at 6, 12 and 24 hours after GS-E administration and assayed for F-Luc activity. GS-E resulted in a maximal induction of F-Luc activity at 6 hours in tumor tissue with almost complete reversion to control levels by 12 hours. CONCLUSIONS: This study is the first demonstration that robust and reversible transgene expression in tumors is feasible using the ecdysone system, allowing future rapid in vivo functional characterization of gene function or gene therapy applications

    Impact of a 6-wk olive oil supplementation in healthy adults on urinary proteomic biomarkers of coronary artery disease, chronic kidney disease, and diabetes (types 1 and 2): a randomized, parallel, controlled, double-blind study

    Get PDF
    Background: Olive oil (OO) consumption is associated with cardiovascular disease prevention because of both its oleic acid and phenolic contents. The capacity of OO phenolics to protect against low-density lipoprotein (LDL) oxidation is the basis for a health claim by the European Food Safety Authority. Proteomic biomarkers enable an early, presymptomatic diagnosis of disease, which makes them important and effective, but understudied, tools for primary prevention. Objective: We evaluated the impact of supplementation with OO, either low or high in phenolics, on urinary proteomic biomarkers of coronary artery disease (CAD), chronic kidney disease (CKD), and diabetes. Design: Self-reported healthy participants (n = 69) were randomly allocated (stratified block random assignment) according to age and body mass index to supplementation with a daily 20-mL dose of OO either low or high in phenolics (18 compared with 286 mg caffeic acid equivalents per kg, respectively) for 6 wk. Urinary proteomic biomarkers were measured at baseline and 3 and 6 wk alongside blood lipids, the antioxidant capacity, and glycation markers. Results: The consumption of both OOs improved the proteomic CAD score at endpoint compared with baseline (mean improvement: –0.3 for low-phenolic OO and −0.2 for high-phenolic OO; P < 0.01) but not CKD or diabetes proteomic biomarkers. However, there was no difference between groups for changes in proteomic biomarkers or any secondary outcomes including plasma triacylglycerols, oxidized LDL, and LDL cholesterol. Conclusion: In comparison with low-phenolic OO, supplementation for 6 wk with high-phenolic OO does not lead to an improvement in cardiovascular health markers in a healthy cohort. This trial was registered at www.controlled-trials.com as ISRCTN93136746

    Evaluation of the zucker diabetic fatty (ZDF) rat as a model for human disease based on urinary peptidomic profiles

    Get PDF
    Representative animal models for diabetes-associated vascular complications are extremely relevant in assessing potential therapeutic drugs. While several rodent models for type 2 diabetes (T2D) are available, their relevance in recapitulating renal and cardiovascular features of diabetes in man is not entirely clear. Here we evaluate at the molecular level the similarity between Zucker diabetic fatty (ZDF) rats, as a model of T2D-associated vascular complications, and human disease by urinary proteome analysis. Urine analysis of ZDF rats at early and late stages of disease compared to age- matched LEAN rats identified 180 peptides as potentially associated with diabetes complications. Overlaps with human chronic kidney disease (CKD) and cardiovascular disease (CVD) biomarkers were observed, corresponding to proteins marking kidney damage (eg albumin, alpha-1 antitrypsin) or related to disease development (collagen). Concordance in regulation of these peptides in rats versus humans was more pronounced in the CVD compared to the CKD panels. In addition, disease-associated predicted protease activities in ZDF rats showed higher similarities to the predicted activities in human CVD. Based on urinary peptidomic analysis, the ZDF rat model displays similarity to human CVD but might not be the most appropriate model to display human CKD on a molecular level

    Proteomics as a quality control tool of pharmaceutical probiotic bacterial lysate products

    Get PDF
    Probiotic bacteria have a wide range of applications in veterinary and human therapeutics. Inactivated probiotics are complex samples and quality control (QC) should measure as many molecular features as possible. Capillary electrophoresis coupled to mass spectrometry (CE/MS) has been used as a multidimensional and high throughput method for the identification and validation of biomarkers of disease in complex biological samples such as biofluids. In this study we evaluate the suitability of CE/MS to measure the consistency of different lots of the probiotic formulation Pro-Symbioflor which is a bacterial lysate of heat-inactivated Escherichia coli and Enterococcus faecalis. Over 5000 peptides were detected by CE/MS in 5 different lots of the bacterial lysate and in a sample of culture medium. 71 to 75% of the total peptide content was identical in all lots. This percentage increased to 87–89% when allowing the absence of a peptide in one of the 5 samples. These results, based on over 2000 peptides, suggest high similarity of the 5 different lots. Sequence analysis identified peptides of both E. coli and E. faecalis and peptides originating from the culture medium, thus confirming the presence of the strains in the formulation. Ontology analysis suggested that the majority of the peptides identified for E. coli originated from the cell membrane or the fimbrium, while peptides identified for E. faecalis were enriched for peptides originating from the cytoplasm. The bacterial lysate peptides as a whole are recognised as highly conserved molecular patterns by the innate immune system as microbe associated molecular pattern (MAMP). Sequence analysis also identified the presence of soybean, yeast and casein protein fragments that are part of the formulation of the culture medium. In conclusion CE/MS seems an appropriate QC tool to analyze complex biological products such as inactivated probiotic formulations and allows determining the similarity between lots

    Narrow safety range of intraoperative rectal irradiation exposure volume for avoiding bleeding after seed implant brachytherapy

    Get PDF
    <p>Abstract</p> <p>Background & Purpose</p> <p>Rectal toxicity is less common after <sup>125</sup>I seed implant brachytherapy for prostate cancer, and intraoperative rectal dose-volume constraints (the constraint) is still undetermined in pioneering studies. As our constraint failed to prevent grade 2 or 3 rectal bleeding (bled-pts) in 5.1% of patients, we retrospectively explored another constraint for the prevention of rectal bleeding.</p> <p>Materials and methods</p> <p>The study population consisted of 197 patients treated with the brachytherapy as monotherapy using real-time intraoperative transrectal ultrasound (US)-guided treatment at a prescribed dose of 145 Gy. Post-implant dosimetry was performed on Day 1 and Day 30 after implantation using computed tomography (CT) imaging. Rectal bleeding toxicity was classified by CTC-AE ver. 3.0 during a mean 29-month (range, 12-48 months) period after implantation. The differences in rV100s were compared among intraoperative, Day 1 and Day 30 dosimetry, and between that of patients with grade 2 or 3 rectal bleeding (the bled-pts) and of the others (the spared-pts). All patients were divided into groups based on provisional rV100s that were increased stepwise in 0.1-cc increments from 0 to 1.0 cc. The difference in the ratios of the bled-pts to the spared-pts was tested by chi-square tests, and their odds ratios were calculated (bled-OR). All statistical analyses were performed by <it>t</it>-tests.</p> <p>Results</p> <p>The mean values of rV100us, rV100CT_1, and rV100CT_30 were 0.31 ± 0.43, 0.22 ± 0.36, and 0.59 ± 0.68 cc, respectively. These values temporarily decreased (p = 0.020) on Day 1 and increased (p = 0.000) on Day 30. There was no significant difference in rV100s between the bled-pts and spared-pts at any time of dosimetry. The maximum bled-OR was identified among patients with an rV100us value above 0.1 cc (p = 0.025; OR = 7.8; 95% CI, 1.4-145.8); an rV100CT_1 value above 0.3 cc (p = 0.014; OR = 16.2; 95% CI, 3.9-110.7), and an rV100CT_30 value above 0.5 cc (p = 0.019; OR = 6.3; 95% CI, 1.5-42.3).</p> <p>Conclusion</p> <p>By retrospective analysis exploring rV100 as intraoperative rectal dose-volume thresholds in <sup>125</sup>I seed implant brachytherapy for prostate cancer, it is proved that rV100 should be less than 0.1 cc for preventing rectal bleeding.</p

    A Distinct Urinary Biomarker Pattern Characteristic of Female Fabry Patients That Mirrors Response to Enzyme Replacement Therapy

    Get PDF
    Female patients affected by Fabry disease, an X-linked lysosomal storage disorder, exhibit a wide spectrum of symptoms, which renders diagnosis, and treatment decisions challenging. No diagnostic test, other than sequencing of the alpha-galactosidase A gene, is available and no biomarker has been proven useful to screen for the disease, predict disease course and monitor response to enzyme replacement therapy. Here, we used urine proteomic analysis based on capillary electrophoresis coupled to mass spectrometry and identified a biomarker profile in adult female Fabry patients. Urine samples were taken from 35 treatment-naive female Fabry patients and were compared to 89 age-matched healthy controls. We found a diagnostic biomarker pattern that exhibited 88.2% sensitivity and 97.8% specificity when tested in an independent validation cohort consisting of 17 treatment-naive Fabry patients and 45 controls. The model remained highly specific when applied to additional control patients with a variety of other renal, metabolic and cardiovascular diseases. Several of the 64 identified diagnostic biomarkers showed correlations with measures of disease severity. Notably, most biomarkers responded to enzyme replacement therapy, and 8 of 11 treated patients scored negative for Fabry disease in the diagnostic model. In conclusion, we defined a urinary biomarker model that seems to be of diagnostic use for Fabry disease in female patients and may be used to monitor response to enzyme replacement therapy

    Caveolin 1 protein expression in renal cell carcinoma predicts survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Caveolae play a significant role in disease phenotypes such as cancer, diabetes, bladder dysfunction, and muscular dystrophy. The aim of this study was to elucidate the caveolin-1 <it>(</it>CAV1<it>) </it>protein expression in renal cell cancer (RCC) and to determine its potential prognostic relevance.</p> <p>Methods</p> <p>289 clear cell RCC tissue specimens were collected from patients undergoing surgery for renal tumors. Both cytoplasmic and membranous CAV1 expression were determined by immunohistochemistry and correlated with clinical variables. Survival analysis was carried out for 169 evaluable patients with a median follow up of 80.5 months (interquartile range (IQR), 24.5 - 131.7 months).</p> <p>Results</p> <p>A high CAV1 expression in the tumor cell cytoplasm was significantly associated with male sex (p = 0.04), a positive nodal status (p = 0.04), and poor tumor differentiation (p = 0.04). In contrast, a higher than average (i.e. > median) CAV1 expression in tumor cell membranes was only linked to male sex (p = 0.03). Kaplan-Meier analysis disclosed significant differences in 5-year overall (51.4 vs. 75.2%, p = 0.001) and tumor specific survival (55.3 vs. 80.1%, p = 0.001) for patients with higher and lower than average cytoplasmic CAV1 expression levels, respectively. Applying multivariable Cox regression analysis a high CAV1 protein expression level in the tumor cell cytoplasm could be identified as an independent poor prognostic marker of both overall (p = 0.02) and tumor specific survival (p = 0.03) in clear cell RCC patients.</p> <p>Conclusion</p> <p>Over expression of caveolin-1 in the tumour cell cytoplasm predicts a poor prognosis of patients with clear cell RCC. CAV1 is likely to be a useful prognostic marker and may play an important role in tumour progression. Therefore, our data encourage further investigations to enlighten the role of CAV1 and its function as diagnostic and prognostic marker in serum and/or urine of RCC patients.</p
    corecore