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Multivariate Reciprocal Stationary Gaussian Processes* 
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In this paper we examine the characterization of multivariate reciprocal 
stationary Gaussian processes in terms of their covariance matrix function. As an 
illustration, we identify all second-order reciprocal Gaussian processes. ” 19x7 

Academic Press. Inc 

In several previous papers (see, e.g., 16, 7, 91) one-dimensional 
reciprocal stationary Gaussian processes were studied, essentially from the 
point of view of their characterization in terms of covariance functions; a 
complete answer to this problem is given in [4]. The property of being 
reciprocal can also be found in the literature under the name of quasi- 
Markov property (see, e.g., [6]). A related slightly more general property 
is that of being conditionally Markov (see, e.g., [2,9]). In the more 
general setting of Gaussian fields, characterization of fields with the 
Markov property in terms of Hilbert space concepts were given, e.g., in 
[ll, 12, 141. 

Our aim is to characterize multivariate reciprocal stationary Gaussian 
processes with continuous parameter in terms of their covariance matrix 
function. A matrix differential equation is derived whose solutions are, up 
to parameter restrictions, the covariance matrix functions of such processes. 
Instrumental in obtaining these results is a “factorization” property of the 
covariance matrix function. 

As an illustration we apply our results to the special class of second- 
order reciprocal stationary Gaussian processes. Miroshin [lo] studied this 
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class but gave an incomplete characterization, as a result of his use of an 
incorrect differential equation satisfied by the covariance function. 

1. AUXILIARY RESULTS 

Let -K’ < CI < h < 1% and the integer WI 3 1 be given. In what follows we 
shall always consider m x wz or /?z x 1 real matrices, 0 and I being the zero 
and the unit matrix, respectively. All random processes we are dealing with 
are R”‘-valued; without any loss of generality we shall assume that they are 
centered. E denotes expectation with respect to a probability measure P. 

LEMMA 1 .l. Szlppose rhat 

K(s, t) = Q(s) YT(t), a<s<t<h, (1.1) 

(“T” &notes trunsposition), brhere @ and Y are taco matris,fitnctions dcjined 
on (a, h) such that: ( 1 ) @ and Y are contimtous on (a, b); (2) @YT is inver- 
tible on (u, h ). Then K( .s, t ) is a nonnegative dejhite kernel, u < s < t < h, if 
und only if: (i) n(r)= Y-‘(t) Q(t) is positive definite and qlmmetric, 
iE (u, h); (ii) lim,l,, A(t) c.uists, say A(a), and is nonnegative definite; (iii) 
A( t ) - A(s) is nonnegative definite, u d s < t < h. 

Prooj: Since K(t, t) is positive definite, t E (a, b), and A(t) = 
Y ‘(t) K(t, t)(Y ‘(t))T, tE(a, b), we obtain (i). Observe now that there 
exists a continuous in q.m. Gaussian process @ = ( Y(t): t E (a. !I): whose 
covariance matrix function is given by K. Furthermore n(t) - ,4(s) = 
Y ‘(t)[K(t,t)-KT(s,t)K ‘(.~s)K(s,t)](Y~‘(r))~, a<s<t<b, where 
the bracketed factor is also nonnegative. being equal to 
E([Y(t)-E(Y(t)lY(s))][Y(t)-E(Y(t)lY(s))]’}, u<s<t<b. which 
implies (iii ) on (LZ, h). For fixed ,v E R”‘, we infer that .uT/i(t) X, t E (a, b), is a 
nonnegative increasing function and thus lim , 1 il vTA (t) .Y exists. Since for 
any -x, y E R”‘, 

we obtain that lim , it, JtT,4( t) .I- = L(.x-, J,), where L is bilinear and con- 
tinuous; thus L can be represented as L(s, J,) =J~~A.x. It is now obvious 
that A = lim, 1 L, ,4(t) = A(a) that (ii) holds. Finally, (iii) on [a, b) follows by 
a limit argument. 

Conversely, assume that (i ), (ii), and (iii) hold and consider a process 
#. = { G(t): t E [a, 6)) such that (ml ) m(a) is normally distributed 
N(0, A(a)); (@‘2) @‘(t) - m(s) is normally distributed N(0. A(t) - n(s)), 
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a<s<r<b; (@3) for a<t,<t,< . . . <t,<b, {w(u), 6’(t,)-~(tkm ,), 
1 <k 6 Ij is a set of independent random vectors. Then 
E[ Y(s) W(s) WT(t) YT(r)] = K(s. t), cz <s d t < b. 

The factorization appearing on the right-hand side of ( 1 .l ) is unique up 
to an invertible constant matrix factor and is equivalent to 

K(s, t)= K(s, u) Km ‘(u, u) K(u, t), cz < .s < Ii < t < h. (1.2) 

Let X= {X(t): t E (a, b)} be a random process 

LEMMA 1.2. Suppose that X is a Gaussiun process. Then .‘t’ hus N 
couuriance n1atri.u jiinction oj‘ the jtirm ( 1.1 ) if’ ad only If’ 9’ is corltinuous in 
quadratic mean, Markotlian, and det E( A’( t) XT(t)) # 0, t E (a, h). 

Prooj: See [ 13, pp. 54-551. 

DEFINITION 1.3. Let u d c < CI < h. .‘!’ is called a (c, &reciprocal process 
if and only if, for each L‘ <s < f < d R(s, t) and .S(s, t) are conditionally 
independent given X(s) and X(t), where A(s, t) is the a-field generated by 
X(r), rE (c, d)\(s, 0, and 9(s, t) is the o-field generated by X(r), r E (s, t). 

It is easily seen that Markov processes are (c, d)-reciprocal for any (c, d) 
(see [7, Lemma 2, p. 16261). Let us also remark that stationarity implies 
that a (c, c/)-reciprocal process is also (c’, J)-reciprocal for any interval 
(c’, J) c (a, h) such that d’ ~ C’ = cl- C’ = T. For the sake of simplicity 
we shall assume that (c, d) = (0, T) and we shall always refer to 
(0. T)-reciprocal processes. 

From now on we shall only consider stationary random processes .?’ 
whose covariance matrix function f belongs to the class 9 of functions G 
defined on (T, T) with values in the set of m x nz matrices such that G is 
continuous, G(0) = Z, I- GT( t) G(f) is positive definite and G( ~ t) := CT(r), 
~E(-T, T). 

LEMMA 1.4. .J” is a (0, T)-reciprocal Guzusian process if’ and only $fbr 
I,,E(O, T) the processes 3’ ={Y+(f): tE(t,,, T)i ad !4’ = [Y-(t): 
t E (0, t,) 1. are Markouian, bchere 

Y+(t)=x(t)-fT(t-l”)X(t”), I E (I,,, TL 

Y (t)=X(t)-f(f,--)X(t”), f E (0. to). 

Proof: For the proof, see relations (3). (4), and (5) [4, p. 2921 

The following result plays an important part in the sequel. 
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THEOREM 1.5. ~CS 9 is the covuriance matrix -function of u (0, T)- 
reciprocul Gaussian process if’and or+, if there exist two couples @, Y and 
@*, Y* satisj@ng conditions (1) and (2) of‘ Lemma 1.1 and such that 

r(t-.s)--T(s)f(f)=~(S) YT(t). 

rT(t-.P)-f(s)I‘T(f)=@*(S) Y*T(t), 

O<s,<t< T. (1.3) 

Proqf: Set 

K(s, t)=r(r-S)-rr(s)f(t)=@(s) YT(t). 

O<sdt< T, 

and let us show that conditions (i), (ii), and (iii) of Lemma 1.1 are satisfied. 
Indeed, /i( ) = Y ‘(. ) @(. ) = Y-‘(. )[l - fT( .) r( t )]( Y ‘( ))T is 
positive definite and symmetric on (0, T); thus (i) holds. Further, since 
n is differentiable, for any XE R” we have .x’[A(t) - /l(s)] .Y= 
(t - .F) .xT/l’(H,) .X for a convenient 8,) 0 < s 6 cI,6 t, depending on X; hence, 
to conclude that A(t) -n(s) is nonnegative definite, it suflices to prove that 
A’( ) is nonnegative definite on (0, T). From (1.3) and the fact that 

I-rT(t) f(t)=@(t) YT(t)= Y(t) QT(t), t E (0, T), 

we obtain 

A’(u) = [Y- ‘(10 CD(u)] 

= Y l(u) D’(u) - Y -‘(u 

= Y ‘(u)[@‘(u) YT(U) 

- Y’(u) @T(u)(@T(U)) 

= Y ‘(u)[@‘(u) YT(u)- 

) Y(u) Y-‘(u) @(IA) 

’ Y-‘(u) Q(u) YT(u 

Y’(u) QT(u)](Y l(z 

,I( ‘v -‘(u))T 

l)lT 

=Y ‘(u)[-r“(O+)-rT(O+)](Y ‘(U)JT, 

the existence of I“(0 + ) following from ( 1.3). Now 

thus -T’(O + )- (I”(O+ ))’ is nonnegative definite on (0, T) and con- 
sequently (iii) holds. (ii) follows from (iii) as in Lemma 1.1. According to 
Lemma 1.2, there exists a continuous in quadratic mean Gaussian Markov 
process J& = { U(t): t E (0, t)) whose covariance matrix function is K. In the 
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same way and using the same arguments, we are led to the same conclusion 
for 

K*(s, t) = z-T(f -s) - z-(s) rT(t) = Q*(s) Y*‘(r), 

O<s<trT. 

Further, set X(t) = U(t) + TT(t) Z, t E (0, T), with Z independent of “2/ and 
normally distributed N( 0, I). It is easy to show that :r = {X(t): t E (0, T) j 
is a stationary Gaussian process whose covariance matrix function is T. It 
remains to verify that y is (0, T)-reciprocal but this follows from 
Lemma 1.4. 

Conversely, let us suppose that r is the covariance matrix function of a 
(0, T)-reciprocal Gaussian process. According to Lemmas I .4 and 1.2 for 
any fixed 1,~ (0, T) there exist on (f,,, T) @,,, and !PIO satisfying con- 
ditions ( 1) and (2) of Lemma 1.1 such that 

r(t-s)-TT(s-t,)r(t-t,)=~,,(S) Y;(t), t,, < s d t < 7: 

Next it is easy to extend @jr0 and Yv,, on (to, T+ to) such that conditions (1) 
and (2) of Lemma 1.1 are satisfied. Since these extensions do not depend on 
t,, set D(u) = @,,( u -t to) and Y(U) = Y,(u + to) for u E (0, T); clearly these 
matrix functions satisfy the preceding two conditions as well as the first 
equation of (1.3). The same argument can be used for the construction of 
@* and ‘I/*. 

Remurk 1.6. Given the covariance matrix function of a (0, T)-reciprocal 
process T, and setting 

K(s,t)=f(t-s)-fT(s)r(t), O<s<t<T, 

we can always [ 13, p. 551 exhibit Q, and Y. For a fixed r E (0, T), take 

D(s) = 
K(.& T) for s 6 5, 
K(s, s)(K(r, s)) ’ K(z, t) for s > 5, 

and 

K(t, t)(KT(t, c)) ~-’ for t < r, 
KT(q t)(K(r, r))- ’ for t > r. 

The same argument holds for r* = rT. 
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2. A DIFFERENTIAL EQUATION SATISFIED BY THE 

COVARIANCE MATRIX FUNCTION 

Let 1’ be the covariance matrix function of a (0, T)-reciprocal Gaussian 
process. 

PROPOSITION 2. I. Suppose that r is continuous at 0. Then r is infiniteI) 
djfferentiuhle on (0, T). Moreooer, f’“‘(0 + ) e.uists ,for all n 3 1. 

Proof: For the first part, see [S, p. IO]. The existence of r’“‘(O+ ), 
~3 1, follows by letting J’ 1 s > 0 in 

where 

P)(y) = C(x) I”“‘( J’ -x) + D(x) .““( J‘ + x). 

C’(.v)= C/‘(s)- f”(.Y) ry2.u)][z-rT(2s) /-(2.x)] -‘, 

D(.r)= r’(s)- c’(.v) /‘r(2.Y), 

with 0 < .Y < I +j’ < T. 

We are now in a position to give a differential equation which is 
necessarily satisfied by f. 

THEOREM 2.2. Suppose that I‘ is c.ontinuous ut 0. Then there e.uist cm 
integer Iz, 0 <II <VI (the smallest) and n + 1 constant matrices M,,,, 
0 < i < It, sucI~ that r sutisfies the ,fbNo,ving dijferential equation: 

I “‘I + ’ ‘( t ) + i M,,,, f”‘( t ) = 0, t E (0, T). (2.1 1 

Proqf: Let r > I and, set 

yr(t)= (-1 )‘P’(r)- (r”‘(o+ ))T ljt)= W’(O+ ) F(t). 

Further let ri, be the dimension of the linear subspace spanned by the rows 
of @“‘(O+ ), I <i<r. 

If tl, = 0, we obtain (2.1 ) from 

y,(t)=O. t E (0, T). 

If d, > 0 and if there exists n < n1 such that d,, = cl,, + , , then there exists n 
(not necessarily unique) constant matrices A,,.,, 1 <id n, such that 

@“‘+“(o+)+ i A,*,,@“‘(o+ )==O (2.2) 
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and we obtain (2.1) from 

Y,,+,(f)+ 2 A,,.,Y,(t)=o> t E (0. T), 
,=I 

with 

M,,,, = ( - 1)” 1 A ,,., (f(“(O + 1)‘. A,,,,, + , = I, 
,=l 

M,,., = ( - 1 )“+‘+ ’ A,,.,, 1 < i < II. 

Finally if cl, > 0 and (I,, 1 < i < ~7, are all distinct, then rl,,, = 177 and (2.2) 
holds with n = m. 

Retnark 2.3. Suppose that there exists a smallest integer YI 3 1 such that 
rank @‘“‘(O+ ) = m (which is equivalent to the invertibility of y,,( ) on 
(0, 7)). Then cl,,, , = (j,, = r~z and there exists two unique constant matrices 
,4,, and B,, such that f satisfies the following differential equation: 

with 

z-“‘+“(f)+,4,, r’“‘(t)+ B,,z-(r)=O, t E (0. T), (2.3) 

‘4 ,, = # “‘+“(O+ )(qY”‘(Ot- ))~-I =;‘,!+ ,(1)i’,-l(t), 1 E (0. T). 

B,,=(-l)‘~+‘[A,,(~“~‘(O+))T-(f”‘+”(O+))T]. 
(2.4) 

If II ,<~r we obtain (2.3) from (2.1) by taking 

M,,,,, = B,, . 

M,,., = 0, 1 d i < !I, 

M,,.,, = A ,, 

Although (2.3) has a simpler form than (2.1) it may be of higher order. 

Let us now examine the following problem. Given the differential 
equation (2.1) (or (2.3)) with the initial conditions I-“‘(0 + ), 0 < i < II, find 
those solutions which are matrix covariance functions of a (0, T)-reciprocal 
Gaussian process. 

We begin by finding the general solution of (2.1) (or (2.3)). This is, at 
least theoretically, always possible. Indeed (2.1 ) (or (2.3)) can be reduced 
to nz linear differential systems each with nz(lz + 1) unknown functions: the 
elements of the columns of f and their derivatives up to the order n. With 
the general solutions of these systems in the form of exponential matrices, 
we can find the roots of the characteristic equations of the exponent 
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matrices. Given the initial conditions we are then led to the unique solution 
of (2.1) (or (2.3)). 

Given the initial conditions, we must now verify whether the unique 
solution of (2.1) (or (2.3 )) is the covariance matrix function of a (0, T)- 
reciprocal Gaussian process. We begin by checking that r~ 9. This 
verification leads to the restriction of the domain for the parameters (the 
initial conditions) appearing in the solution if T> 0 is given; if the 
parameters are given then this verification leads to the restriction of the 
domain of T. Further if Y,~( . ) is invertible on (0, T), we can normalize 
@“l’(O + ) = I and take y,,( . ) and [I- rT( . ) r(. )] y,, ’ ( ) for UrT( ) and 
@( ) respectively; these @( . ) and Y( ) satisfy conditions (1) and (2) of 
Lemma 1.1, and it remains to check ( 1.3) to be sure that Theorem 1.5 
applies. If y,!( ) is not invertible on (0, T), we refer to Remark 1.6. for 
obtaining candidates for Yr( ) and @( ). It goes without saying that 
according to Theorem 1.5 a similar verification must be made for r*. 

3. EXAMPLES 

A. Tiw Murhc Case 

We know that a continuous in quadratic mean Gaussian Markov 
process on (0, x,) has the covariance matrix function r(t) =exp( -At), 
t 2 0, satisfying the differential equation 

r(r)-tAr(t)=o, t E (0, x 1, (3.1) 

where A = ~ r’(0 + ) and A + AT is nonnegative definite [S, p. 123. 
As already noted, Markov processes satisfy Definition 1.3; however 

I ~ rT( ) I-( ) is not necessarily positive definite on (0, CC ). According to 
[3], I- rT( ) I-( ) is positive definite on (0, 1x1) if and only if A + AT is 
nonnegative definite and the real parts of the eigenvalues of A are all 
positive. Next the factorization (1.3) holds for r(t) = exp( -At), t 3 0, with 
Q(t) = exp(At) - exp( -ATt) = Q*‘(t) and Y’(t) = exp( -Al) = Y*(t), 
t > 0. Hence, by Theorem 1.5, we conclude that r(t) = exp( --AI), t > 0, is 
the covariance matrix function of a (0, CC )-reciprocal Gaussian process and 
as such it is the unique solution of a differential equation of type (2.1) 
which, in this case, can be taken of the form (3.1). 

The question remains open as to whether Markov processes are the only 
(0, ;;o)-reciprocal Gaussian processes; for the univariate case [4] as well as 
for second-order processes (see Section 4, p. 37) the answer is positive. 

An example of a 2 x 2 matrix A satisfying the above conditions is 
A = ( _(j A.), w> 0, corresponding to a second-order stationary Markov 
process [lo] (see also Section 4, p. 65). 
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B. The Slepian Case 

Let us consider the case when f satisfies (2.3) with n = 1 
A,=B,=O: 

T”(t)=O, t E (0, T). 

We immediately obtain the unique solution of (3.2), 

r(t)=r+r(o+)t, t E (0, T). 

and 

(3.2) 

(3.3) 

The factorization of r holds: @(t) = It = D*(t), !P(t)=y,(t)= 
A+AT-ATAt, Y*=(t)=A+AT-AATt, tE(O,T), whereA=-I”(O+). 
Then IJ ) given by (3.3) corresponds to a (0, T)-reciprocal Gaussian 
process if and only if det(A + AT) > 0 and A + AT - AT AT is nonnegative 
definite. For m = 2 we obtain det(A + AT) > 0, tr A > 0, and 

T6 (trA-[(trA)‘-det(A+A’)]“‘)/detA; 

for m = 1 we obtain 0 < A <2/T. In analogy with the one-dimensional case 
(see [7, p. 16301) such a process may be referred to as a multivariate 
Slepian process. 

C. The Block~~~ise Independent Cost 

Let us suppose that I- satisfies (2.3) with II = I and A, = 0: 

r”(t)+B,r(l)=O, TV (0, TL (3.4) 

with the initial condition r’(0 + ) assumed to be a diagonal matrix. If 
B, = -r”(O + ) is also a diagonal matrix with diagonal elements h,, 
1 < i ,< m, then the solution r( . ) = ( pi,( . )) of (3.4) is given by 

p,-(t) = 6,,P,(f), 1 <i,j<m, f E (0, TL 

where 6, is the Kronecker symbol and p, is the solution to the differential 
equation 

p:‘(t) + b,P,(f) =o, i< 1 Gm, tE(O. T) (3.5) 

Since I- is diagonal the process involved has independent components and 
each component is a one-dimensional (0, T&reciprocal Gaussian process. 
In view of [4, p. 2921 each of the unique solution p, of (3.5), 1 < i< m, say 
p may have only one of the following three forms, t E ( - T, T), depending 
on whether hi, 1 d id m, say b, is < 0, > 0, or = 0: 



56 CARMICHAEL, MASS& AND THEODORESCU 

p(t) = cash af + u ‘[j’(O+ ) sinh altl, 

a > 0, -acoth(aT/2)dp’(O+ )<atanh(aT/2). 

p(t)=cosat+a ‘p’(O+)sinalfl, 

O<a<n/T, -a cot(aT/2) d ~‘(0 + ) < 0, 

p(t)= 1 +p’N+ )Irl, -2/Tdp’(O+ )<O, 

where a = Ihl I,‘. If the elements of r’(0 + ), i.e., p:(O + ), 1 6 i < nz, lie within 
the admissible domains indicated above, then r corresponds to a mul- 
tivariate (0, T)-reciprocal Gaussian process. 

With slight modifications, the above reasoning applies when B, in (3.4) 
is a block-diagonal matrix. If r’(0 + ) is also block-diagonal with the same 
structure and its block-diagonal elements are r;(O + ), 1 6 16 Y. then we are 
led to a block-diagonal solution f of (3.4) whose block-diagonal elements 
I-,, 1 < I,< r, correspond to multivariate (0, T)-reciprocal Gaussian 
processes of lesser dimension insofar as their r,(O + ), 1 < I6 r, lie whithin 
the admissible domains. 

From blockwise independent multivariate (0, T)-reciprocal Gaussian 
processes we can construct reciprocal processes with dependent com- 
ponents by using orthogonal matrices. For these processes the admissible 
domains are easily described. 

D. Reciprocit?~ OH Small Intervals 

Let us consider the case nz = 2, i.e., 

I‘(. )= c Pll( J PIA 1 1 /?!I( ) I’d 1 ’ 
and set h(.)=detM(.), M(.)=I-r’(.)r(.). If M(.) is positive 
definite on (0, T), then necessarily M’(O+ )= -f’(O+ )- (r’(0-t ))’ is 
nonnegative def-inite and this holds if and only if 

maxjp;,(O+ ),p&(O+ 1) GO, 

det(I“(0)+(Z7’(O+ ))T>O. 
(3.6) 

PROPOSITION 3.1. Let f( ) he the unique solution of’ (2.1 ) with givetz 
irzitial conditions und suppose thut: (a) tr r’(0 + ) < 0; (b) the condition of 
Theorem 1.5 is satkfied; (c) there exists an integer k 3 2 such that 
h”“(O+)>O ana’h”‘(O+ )=O. O<j<k. Then there exists an E>O such 
that r( ) is the covariance matrix function of‘ a (0, &)-reciprocal Gaussian 
process. 
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Prooj: If, in addition to (3.6) tr r’(0 + ) < 0, then M( ) is positive 
definite on (0, E), F >O, if and only if \z( . ) > 0 on (0, F;). Further 

/I(. )= 1 + [p,,( )p13( )-PE( )P?,( )I’ 

-pT,( t )-pf,( I-&( )-Pi&( 1 

and h(O) = 0 and h’(O+ ) =O. In view of (c) and then (b) we are led to our 
result. 

Consider, for example, a two-dimensional Slepian process. If tr A :> 0 and 
det(A + AT) > 0, then according to Proposition 3.1 we are sure that the 
solution r corresponds to a (0, E)-reciprocal process with a sufficiently 
small E > 0. 

4. SECOND-ORDER RECIPROCAL PROCESSES 

For the remainder of this section we shall assume uz = 2. 

DEFINITION 4.1. Let 3 = [Z( 1): t E (a, h) ) be a real-valued differen- 
tiable in quadratic mean process and let Y’ denote its derivative. Y is 
called a seconhorder (c, d)-reciprocal process if and only if :‘r = (X( t ): 
tE(u,h)), X(t)=(Y(t), Y’(r))T, rE(lc,h), is a (c,(j)-reciprocal process. 

In what follows we shall consider only second-order processes 9 such 
that its associated X satisfies the conditions already assumed in the 
previous sections. 

Setp(t)=E(Z(s)Z(r+r)),Odsdt+t<T.Thenthecovariancematrix 
function r of :r is given by 

f-(t) = P(t) P’(f) 

-P’(t) > -p”(t) ’ 
f  E ( - T, T). 

According to Proposition 2.1, f is infinitely differentiable on (0. 7) and 
fcr’(O + ) exists, r 3 I. 

For Y>, 1 let us set 

yr = r,(O + ). 

Rrnzurk 4.2. If y, is invertible, then p,,( ) is also invertible on (0, T) and 
in this case (cf. (2.4)) 

‘4 n = +i’ ,, + 1 ?i ,,- ’ (4.1) 
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Remark 4.3. Set ~‘“‘(0 + ) = M’~, ka0; then IL’“= 1. IV,=O, H’~= -1, 
and )l‘j 3 0. We obtain 2M I/f I -2w2,+, 

0 ’ ??,+I= o (4.2) 

The first )I 2, + 1, j 3 1, which eventually does not vanish is ~1‘~. Then, for 
II‘ > 0, (2.3 ) becomes 

f’3’(t)+A,f’~)(t)+B,r(t)=0, f E (0, T), (4.3 1 

and in view of (4.1 ) and (4.2) we obtain from (2.4), 

Due to the special form of f, (4.3) is equivalent to the following differential 
equation satisfied by p( . ): 

y’J’(t)+~p”(r)+~p(t)=O, f E (0, T), (4.4) 

with CY = - bl’j ’ ~1’~ and b = - nij - 12‘ ’ ~2‘~. This differential equation 
corrects that proposed by Miroshin in his Lemma 5 [ 10, p. 8491, which, by 
the way, is not satisfied by Markov processes as noted in [ 1, p. 1901. 

Further, for the case under consideration, the matrices @, Y and @*, P* 
in Theorem 1.5 are of the form 

and 

@* = L@L, P=LYL, L= 
1 0 

c :i 0 -1 

If instead of r we use p then ( 1.3) is equivalent to 

P(~~.~)-P(.~)P(~)-P’(~)P’(~)=J;(.s)g,(t)+.f2(S)Q*(f), (4.5) 

O<s<t<T. 

We are now interested in identifying all solutions p of (4.4) which are 
covariance functions of second-order (0, T)-reciprocal Gaussian processes 
by making use of Theorem 1.5. Note that in what follows cx and /I are not 
necessarily of the form x = -u’?- ’ ~3~ and b = - ~1~ ~ +t’, ’ lt’5. 
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THEOREM 4.4. Let (CI, fl) E [w2 and let p( ) be the solution of the difleren- 
tial equation (4.4) together with the initial conditions w0 = 1, II’, = 0, 
w2 = - 1, and w3 3 0 arbitrary. Then there exist four real-valued functions 
f,, fi, g,, and g, defind on (0, T) such that p( ) satisfies (4.5). 

Proof. Let O<s<t< T and set F,(s)=p(t-s)-p(s)p(t)-p’(s)p’(t). 
It is easily seen that F,( ) is a solution of (4.4) and 

F,(O) = 0, 

F;(O) = 0, 

F:‘(O+ )=p”(t)+p(t)-p’3)(0+ )p’(t), 

Fj3’(0+ )= -p’3’(t)-p”‘(0+ )p(t)-p’jl(O+ )p’(t). 

Further, take two solutionsf, andJ> of (4.4) with the following initial con- 
ditions: 

.f,(O) =.f;(o, = 0, f?(O) = f;(o) = 0, 

.f,“(O+ )= 1, fi”(O + ) = 0, 

.r’\“( 0 + ) = 0, .jy’(O + ) = 1 

and set 

G,(s) =.f,(s) F;'(O + ) +.f2(s) Fj3'(0 + ). 

Clearly G,( ) is a solution of (4.4) and 

G,(O) = F,(O), G;(O) = F;,(O), 

G:‘(O + ) = F:‘(O + ), Gj3)(0+ ,=F;3)(O+ ) 

Since the initial conditions for F,( ) and G,( ), are identical, we conclude 
that F,( . ) = G,( ). Thus, setting g,(t) = F;‘(O + ) and g2(t) = Fi”(O + ), we 
obtain (4.5). 

Remark 4.5. The construction off, and f2 in the proof of Theorem 4.4 
shows that we can always assume @“(O + ) = I. Note also that g, and g, are 
solutions of (4.4). 

According to Theorem 2.2, we are sure that the differential equation (4.4) 
together with the initial conditions w0 = 1, )cl = 0, u’~ = - 1, and u’3 30 
arbitrary lead to a unique solution p( . ) which satisfies (4.5). Since we want 
that p( ) to be the covariance function of a second-order (0, T)-reciprocal 
Gaussian process, we have to extend p( . ) on (- T, T) by setting 
p( -t) = p( t), t E (0, T), and find the restriction to be imposed on \t’3 such 
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that r constructed with this p belongs to the class Y. It is easily seen that r 
is continuous at 0, f’(O)=Z, IJ -t)= rT(t), tE (- T, T). It remains to 
examine the matrix M( ) = I- /“( ) f( ). Then h( ) = det M( . ) = 
k(.)k+(.), where 

li.(‘)=(l~p(‘))(l$p”(.))-(p’(.))~. (4.6 1 

THEOREM 4.6. Suppose: (a) VV~ > 0 or (b) tc3 = urzd lv4 > I, oh 
w')=(nz,,(-)), Idi, i<T is positive definite on (0, T) (f‘ und on/!, if 
h( ) > 0 on (0, T). 

Proof: The necessity is obvious. For the sufficiency consider nz,,( 1 
given by 

nz77( ) = I - (p’( )y - (p”( )y. 

Then m>&(O + ) = 2~., and r~‘&(0 + ) = 2( 11’~ - 1 ) - 21~: which implies in 
both cases (a) and (b) that there exists an E > 0 such that ~,~(r) > 0 for 
TV (0, c). If r77,,(f)=O, t,,~ (0, T), then Iz(t,,)<O because fn,2=~~2,, which is 
a contradiction. 

C'OROLLARY 4.7. Let p( ) he the uniqur solution of‘ (4.4) together Irith 
the initial conditions M’~, = 1, H’, = 0. N’~ = - 1, wi > 0 or )I‘~ = 0, and \cJ > 1, 
Thrn p is the cowwiancr ,fimc.tion of u .second-order (0, T)-rrciprocal 
Gaussiun process {f‘ and only if‘ h( ) > 0 on (0, T). 

Remark 4.8. When \I’~ =0 the proof of Theorem 4.6 shows that 
necessarily LV~ - 1 > 0 for the positive definiteness of M( ) on (0, T). 

Rrrrzurk 4.9. An immediate consequence of Theorems 1.5, 4.4. 4.6, and 
of the fact that IzCJ’(O + ) = 8~7’ 3 IS that (cf. Proposition 3.1 ) there exists an 
c > 0 such that the unique solution p( ) of (4.4) together with the initial 
conditions IV,, = 1, I%‘, = 0, M’: = - 1, and etch > 0 is the covariance function of 
a second-order (0, t: )-reciprocal Gaussian process. 

( A ) Thr c’usc I$‘~ > 0 

Set H’ = N> > 0 and let i.,, 1 < i< 4, be the roots of the biquadratic 
characteristic equation associated with (4.4), 

2, = [( --r+n’,z)/2]’ ?, &= -2,. 

I.,= [(-r-d’,‘)/2]“. i,= -i3. 

where LI = x2 ~ 48. There are nine regions in the (~1, /I)-plane corresponding 
to the nine forms of the unique solutions p of (4.4) which are all dependent 
upon the initial condition vv > 0 (see Table I). Region I@ where the process 
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TABLE I 

Regions Corresponding to the Unique Solutions of Eq. (4.4) 

Region Parameters a and /3 Characteristic roots 1, and A, 

a Ll=o,cr=o 

g 
A=O.a(<O 
Ll=o,cc>o 

0 d>O,a<0,/3=0 
0 d>O,cc>O,/l=O 
8 Ll>O,r<O,~>O 
0 d>O,r>o,p>o 
8 ‘4 > 0. < 0 /r 
0 A<0 

L,=i,=O 
;.,=~,=j.~(-n/~)" 

i.,=i,=i=i(a/?)" 

i.,=O.i,=(-a)" 

i.,=O,i,=i(u)'7 

i., #i,, both real 
1, # i,, both imaginary 
d! real, i, 1 imaginary 
i, = i,. both complex 

is Markovian is defined by the half-line CI < 2, /I = 1 going across Regions 
@), 0, and 8. 

Further, we list the nine forms of the solution p corresponding to these 
regions as well as their factorization (4.5) (with @“(O + ) = I). Since 
p( -1) =p( t), we consider only the case t E [O. 2). 

Region 0: 

p(t) = 1 - (4) t’ + (+g wt”, t E co, n 

f;(s) = (:) s2, 

fib) = ct, .F3. 

g,(t) = 2wt - (&,( 1 + W’) t’ + ($) Wf’, 

g?(t)= -2w+($)wt’-($c’ t3. 

Region 0: 

p(t) = cash At - (4) ,c3, 3 sinh At 

+($) w)L” tcosh l.t-(t)l.m’(l.2+ I) t sinh it, fE [O, z-1, 

f,(s)= (4) C’s sinh /Is, 

.f,(.Y) = - ($1 i 3 sinh 1-s + (f) EL ~ ’ s cash As, 

g,(t)= -(+) u~iLP3(IU2- 1)‘sinhAt 

- (4) ET ‘[(I.‘+ l)‘+ MI’] t sinh it 

+ (f, w-‘().~ + 1 )’ t cash 1.t. 

g,(t)= (4) 1 -‘[A4(A2+ 1)2 + w~][?~ sinh it - t cash At] 

+(f)~~‘(l+A~)~tsinhAt-2trcoshit. 
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Region 0: p, as well as the corresponding functions f and g, are 
obtained from those of Region Q by replacing the hyperbolic sines and 
cosines by trigonometric ones using the identities sinh iu = i sin u and 
cash iu = cos u. 

Region 0: 

p(t) = 1 + i.j- 2 - wl, ’ t - AT’ cash A3 t + WA, 3 sinh A3 t, t E co, n 

f,(s)= -iL~‘+Iq’coshEL,s, 

,f,(s) = -i., ’ s + ;1;’ sinh ,I3 s, 

g,(t)=R,‘(LI;+l+w’)(l-cosh&t) 

+ w/lj3 (21; + 1 ) sinh 3., t + WA,’ t, 

g?(t) = -n,j., ’ (21*< - lrtt) - Mlj,i7 (1 -cash A,t) - w7 ,Iy3 sinh l,t. 

Region @ : Same remark as for Region @ applied to Region 0. 

Region a>: 

p(t)=(+A:)P’{(A:+l)coshA,t-(%;+l)cosh& t 

~ wi., ’ sinh A, t + ~1~; ’ sinh I,, t), t E [O, n, 

.f,(s)=(~f-~f)~‘(cosh3.,.~-cosh~~,s), 

.fl(.F)=(~f-~~)~‘(j~l’sinhA, s-1, ’ sinh%,s), 

s,(t)=(E~f-E.~)~‘j[i.~+1)(1~+1)+M~2](cosh~3t-cosh~,t) 

- w{ [I.$jbf + I ) + (1-z + l)] A3 ’ sinh /13 r 

+ [AT(I.$+ l)+(AT+ l)] A;‘sinhA, t}]. 

gz(t)=(if-~:)~‘([i”f~~(~:+l)(~.:+l)+~’] 

x (A, ’ sinh ,I3 t - jb, ’ sinh ,I 1 t ) 

+ ~$2: + 1 )(A.; + 1 )(cosh A, t ~ cash A, t) 

- w(cosh & t + cash A3 t) 1. 

Regions 0, 0, and @ : Same remark as for Region @ applied to 
Region @. 

Newt we are faced with the following problem: 

PROBLEM (I). For each point ( CI, fl) and each T > 0, find the domain 
D(T) for w such that the corresponding p is the covariance function of a 
second-order (0, T)-reciprocal Gaussian process. 
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Theorem 4.6 is instrumental in solving Problem (I). We want to ensure 
that h( ) is positive on (0, T). This reduces to the examination of the fac- 
tors k, (. ) of h( . ) (cf. (4.6)). Due to the form of (4.4), these factors are 
second-degree polynomials in w whose coefficients depend upon r E (0, T) 
and (a, /?) (through A1 and A,): 

k+(t,M~,~,,~~)=A~(t,~,,~~)1.1’~+B~(t,~~,.~”~)U’+C~(t,~,,~~). (4.7) 

For the sake of simplicity we drop, in what follows, any reference to the 
dependence upon (I.,, JV3) in (4.7). 

For t>O let I-(t), L-(t) and I+(t), L+(t) be the roots of km (t, uy)=O 
and k, (t, w) = 0 respectively and denote by d *(t) the discriminant of 
k+(t,ti’). Set b+=inf(t>O:d.(t)=O); in view of Remark2.7, hi >O; if 
A,(t)>0 for any t>O we take b, = cr3. 

Remark 4.10. 1+ , L, are strictly monotonic on (0, b + ) if and only if, 
for any w > 0, the equation in t, k +(t, M’) = 0, has at most one root 
t E (0, b + ). We verified this criterion for all the forms of the solution p; this 
verification required sometimes lengthy and tedious work. For all the forms 
of p, we also showed that I, is an increasing function on (0, b + ) if I+ > 0 
and that L+ is a decreasing function on (0, b + ), lim, lo li (t ) = 0, and 
lim ,,oL* (f)=a. 

SetI=max(O,I~,I+),L=min(L ,L+),and~.=inf{t>O:/(t)=L(t)); 
clearly c> 0 and if I(t) < L(t) for any t > 0 we take c = cr;. Moreover 
cdh,. 

Remark4.11. /(t)<L(t), t~(O,c). 

The answer to Problem (I) is summarized as follows: Let (CX, /3) and 
T>O be given; if T<c then D(T)= [l(t), L(t)] (for 1~0 the value H’=O is 
rejected by our assumption it’ > 0); if T > c, D(T) = @. 

Another problem related to (I) is the following: 

PROBLEM (II). For each point (a, /I) and each ii’> 0, find the largest 
positive real number z(w) such that the corresponding p is the covariance 
function of a second-order (0, T)-reciprocal Gaussian process for any 
Td t(w). 

The answer to Problem (II) is summarized as follows: Let (a, fi) and 
M’>O be given and set z.(w)=minft>O: k,(t, K!)=O) if this set is non- 
empty; otherwise, set r+(w) = co, r -(MI) being analogously defined; then 
r(M’)=min{r~(w),z+(w)}. The relationship between (I) and (II) can be 
stated as: D(T) = {w: T(W) > T), 

if for each T > 0, MI E D( T), 
mfjT>O: w$D(T)) otherwise. 
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Although c always exists, its explicit determination raises serious com- 
putational difficulties so that numerical approximations may be needed in a 
specific situation. 

In what follows we give the coefficients A + , B, , and C, appearing in 
(4.7) for Regions 0, 0, 0, and @ which enable us to determine c, D(T), 
and 50~). The coefficients for the other regions are determined by replacing 
the hyperbolic sines and cosines by trigonometric ones: 

Region @ : 

A = -($t’, ‘4 + = ‘4 , 

B =(i)r3, B + = $( t’ + 4t). 

c =o, c’, = -$. 

.4L = -($) i ‘(sinh’u-II’). 

B,=(f)), ‘(sinhukIc)[i’(coshu$-l)+coshuTl], 

C, = -($)A ‘(L’+ I)‘(sinhlr+u)‘, 

.4 = -41 ’ sinh u( u cash u - sinh u). 

B = 4i 3 cash u(u cash u - sinh u), 

c =o, 

.4+=A , 

B, =4i. ’ sinh I(( u sinh u + i.’ cash u), 

C, = -4sinh’u(l +A ‘), 

u = (:, ir. 

Region 0: 

A = -4k, ’ ii ‘(A; - hi;) ’ sinh” U, sinh’ z+(I., coth zlj -i, coth U, ) 

x (A, coth zl, -- L3 coth z13), 

B =41., ’ i, ‘0-f -P-f) ’ sinh’ zl, sinh’ u,(i,, coth ZL, - 2, coth u3) 

x (i., i,, + coth zd, coth u-0, 
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C = -4(1-f + l)(i”z + l)(i.:-iti) ’ sinh’ U, sinh’ z(j 

x (I, coth U, - I., coth Us)‘, 

A+=‘4 , 

B, =4i, ’ E.,~‘(if-1.:) ’ sinh’ 24, sinh’ u,(i., coth ~4~ -I+ coth zr,) 

x (1 + i., jbj coth U, coth 14,), 

C, =-4(L~+1)(1.:+1)(~~-E,i,))‘sinh’zr,sinh’u, 

x (2, coth ~4~ - A3 coth 14, )‘. 

14, = (3,,/2) f, 143 = (A,i2) 1. 

By way of illustration consider Region 0. In this case I= I,, f, = L . 
where 

/,(r)=t “[3t’+l2-(~3r~+72t’+144)“] 
- 

L (t)=2t ‘, t > 0. and (’ = 2 J3. 

(I ) For 0 < T< 2 ,:5 the admissible interval for 11’ is [/ + ( 7’) 3T ‘1. 
(II) If ii%>0 is given then T (i~)=2~, ‘. r+(\t’) = the only real (positive) 

root of the equation in f, \c.‘f’ - 61rf’ + 12 - 24n, = 0. and T( H*) = 

min[2n~ ‘, t, (IV)). 
The solution p corresponding to this region was also obtained by 

Miroshin [lo, p. 8501 but he failed to notice that T and 11‘ have to be 
restricted. 

Finally let us examine Region @ corresponding to the Markov case. 
There are essentially three covariance functions associated with second- 
order Markov Gaussian processes as already shown by Miroshin 
[ 10, p. 8471. They can be represented as the (1, 1 )-entry of the exponential 
matrix exp { -At), t>O, where A=( : ,‘.); namely Region 0: )I’ < 1, 
Region 0: LV = 1, and Region 8: II‘ > I. For each of these covariance 
functions, (’ = + K.; in fact, the Markov case is the only one with this 
property. For further details on Markov covariance functions and on the 
relationship with the nondegeneracy condition (2) see [3]. 

(B) The Case 11’~ = 0 

Assume that nx3 = 0. In view of Remark 4.8 we also assume that ii’j > 1. 
Since IVY = 0 implies ids,+, = 0, j 3 2, the possibility 1~~ = 1 must also be 
rejected. Next, it is easily seen that we are led to a differential equation of 
the same form as (4.4) with CIE[W and fi= -w~+x, i~,>l. Then J>O so 
that the only admissible solutions are those corresponding to Regions 0 
or @ by setting H’~ = 0. 
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