117 research outputs found

    Stress Evaluation of Welded Steel Bridges on Coal-Haul Routes

    Get PDF
    This report describes the procedure developed and being employed to determine and assess live-load stresses in structural members of welded steel bridges on extended· weight coal haul routes. Those bridges are routinely subjected to loads from coal trucks in excess of those permitted on other routes. Those elevated loads may result in high stresses in bridge members. Of principal concern are certain weld details on steel bridges that are susceptible to fatigue cracking when subject to high live-load stresses. Seventeen welded steel bridges on extended-weight coal haul routes have been identified for investigation under this study. The study test procedure consists of 1) a review of coal-haul data and plans to identify lanes of a bridge subject to greatest coal-truck loading, 2) identification of weld details of interest for analysis on portions of the bridge superstructure subject to high live-load stresses, 3) field application of strain gages to measure live-load stresses at locations of interest on a bridge, 4) continuous monitoring of live stresses from routine traffic for an extended period and 5) data retrieval and reduction and fatigue analysis. Fatigue analysis is based on the number of stress cycles measured during the field test and the equivalent resolved live-load stress. That is compared to the 1992 AASHTO fatigue performance data for applicable structural details (e.g. welded connections). An exemplary use of the study test procedure is given for the KY 15 bridge over the North Fork of the Kentucky River and KY SO in Perry Co. This report describes the test locations, test procedures and results of the derived test data. The field tests will indicate the level of live-load stresses to which the bridges are exposed. Additionally, the fatigue analyses may indicate whether welded steel bridges on extended-weight coal haul routes are susceptible to fatigue damage

    Summary of Stress Evaluations of Welded Steel Bridges on Coal-Haul Routes

    Get PDF
    Stress analyses were performed on continuous girder welded steel bridges on extended weights coal-haul routes. The tests were intended to determine whether extended weight coal trucks pose fatigue problems to those bridges. Measurements were performed by strain gaging selected bridges subject to high coal transport tonnages. Stress measurements were conducted on fatigue-prone weld details or test sites where high tensile stresses were anticipated. Test sites on the bridges were instrumented with strain gages. Strains induced by routine traffic including coal trucks were monitored for periods of one to two weeks. Unattended monitoring of the variable amplitude strain data was performed using rainflow counting. Eighteen successful tests were performed on 15 coal-haul route bridges and one interstate bridge. The derived strain data are provided as stress histograms. Fatigue analyses were performed by expressing the stress histogram data as single-value equivalent stresses. The accumulated number of stress cycles was estimated using 3 different assumptions based upon variations in traffic. Accumulated stress cycles were determined over the current age of each weld detail and a projected service life of 75 years. Susceptibility to fatigue was determined by superimposing the equivalent resolved stresses and total number of cycles as accumulated damage on AASHTO fatigue design curves for the applicable structural details. The fatigue analyses indicate that none of the test bridges with fatigue-prone weld details is susceptible to fatigue cracking either at their current age or over their project 75-year service lives. While coal trucks may induce high live stresses on those bridges, the number of those stress applications was not sufficient to pose fatigue problems. The equivalent resolved stresses measured on the interstate bridge were similar in magnitude to those measured on coal-haul routes. However, the number of stress cycles was greater for the interstate bridge than most of the coal-haul route bridges

    'MRI-negative PET-positive' temporal lobe epilepsy (TLE) and mesial TLE differ with quantitative MRI and PET: a case control study

    Get PDF
    Background: \u27MRI negative PET positive temporal lobe epilepsy\u27 represents a substantial minority of temporal lobe epilepsy (TLE). Clinicopathological and qualitative imaging differences from mesial temporal lobe epilepsy are reported. We aimed to compare TLE with hippocampal sclerosis (HS+ve) and non lesional TLE without HS (HS-ve) on MRI, with respect to quantitative FDG-PET and MRI measures.Methods: 30 consecutive HS-ve patients with well-lateralised EEG were compared with 30 age- and sex-matched HS+ve patients with well-lateralised EEG. Cerebral, cortical lobar and hippocampal volumetric and co-registered FDG-PET metabolic analyses were performed.Results: There was no difference in whole brain, cerebral or cerebral cortical volumes. Both groups showed marginally smaller cerebral volumes ipsilateral to epileptogenic side (HS-ve 0.99, p = 0.02, HS+ve 0.98, p &lt; 0.001). In HS+ve, the ratio of epileptogenic cerebrum to whole brain volume was less (p = 0.02); the ratio of epileptogenic cerebral cortex to whole brain in the HS+ve group approached significance (p = 0.06). Relative volume deficits were seen in HS+ve in insular and temporal lobes. Both groups showed marked ipsilateral hypometabolism (p &lt; 0.001), most marked in temporal cortex. Mean hypointensity was more marked in epileptogenic-to-contralateral hippocampus in HS+ve (ratio: 0.86 vs 0.95, p &lt; 0.001). The mean FDG-PET ratio of ipsilateral to contralateral cerebral cortex however was low in both groups (ratio: HS-ve 0.97, p &lt; 0.0001; HS+ve 0.98, p = 0.003), and more marked in HS-ve across all lobes except insula.Conclusion: Overall, HS+ve patients showed more hippocampal, but also marginally more ipsilateral cerebral and cerebrocortical atrophy, greater ipsilateral hippocampal hypometabolism but similar ipsilateral cerebral cortical hypometabolism, confirming structural and functional differences between these groups.<br /

    Analysis of baseline parameters in the HALT polycystic kidney disease trials

    Get PDF
    HALT PKD consists of two ongoing randomized trials with the largest cohort of systematically studied patients with autosomal dominant polycystic kidney disease to date. Study A will compare combined treatment with an angiotensin-converting inhibitor and receptor blocker to inhibitor alone and standard compared with low blood pressure targets in 558 early-stage disease patients with an eGFR over 60ml/min per 1.73m2. Study B will compare inhibitor-blocker treatment to the inhibitor alone in 486 late-stage patients with eGFR 25–60ml/min per 1.73m2. We used correlation and multiple regression cross-sectional analyses to determine associations of baseline parameters with total kidney, liver, or liver cyst volumes measured by MRI in Study A and eGFR in both studies. Lower eGFR and higher natural log-transformed urine albumin excretion were independently associated with a larger natural log–transformed total kidney volume adjusted for height (ln(HtTKV)). Higher body surface area was independently associated with a higher ln(HtTKV) and lower eGFR. Men had larger height-adjusted total kidney volume and smaller liver cyst volumes than women. A weak correlation was found between the ln(HtTKV) and natural log–transformed total liver volume adjusted for height or natural log liver cyst volume in women only. Women had higher urine aldosterone excretion and lower plasma potassium. Thus, our analysis (1) confirms a strong association between renal volume and functional parameters, (2) shows that gender and other factors differentially affect the development of polycystic disease in the kidney and liver, and (3) suggests an association between anthropomorphic measures reflecting prenatal and/or postnatal growth and disease severity

    Observing the Evolution of the Universe

    Full text link
    How did the universe evolve? The fine angular scale (l>1000) temperature and polarization anisotropies in the CMB are a Rosetta stone for understanding the evolution of the universe. Through detailed measurements one may address everything from the physics of the birth of the universe to the history of star formation and the process by which galaxies formed. One may in addition track the evolution of the dark energy and discover the net neutrino mass. We are at the dawn of a new era in which hundreds of square degrees of sky can be mapped with arcminute resolution and sensitivities measured in microKelvin. Acquiring these data requires the use of special purpose telescopes such as the Atacama Cosmology Telescope (ACT), located in Chile, and the South Pole Telescope (SPT). These new telescopes are outfitted with a new generation of custom mm-wave kilo-pixel arrays. Additional instruments are in the planning stages.Comment: Science White Paper submitted to the US Astro2010 Decadal Survey. Full list of 177 author available at http://cmbpol.uchicago.ed

    Effects of a robot-assisted training of grasp and pronation/supination in chronic stroke: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rehabilitation of hand function is challenging, and only few studies have investigated robot-assisted rehabilitation focusing on distal joints of the upper limb. This paper investigates the feasibility of using the <it>HapticKnob</it>, a table-top end-effector device, for robot-assisted rehabilitation of grasping and forearm pronation/supination, two important functions for activities of daily living involving the hand, and which are often impaired in chronic stroke patients. It evaluates the effectiveness of this device for improving hand function and the transfer of improvement to arm function.</p> <p>Methods</p> <p>A single group of fifteen chronic stroke patients with impaired arm and hand functions (Fugl-Meyer motor assessment scale (FM) 10-45/66) participated in a 6-week 3-hours/week rehabilitation program with the <it>HapticKnob</it>. Outcome measures consisted primarily of the FM and Motricity Index (MI) and their respective subsections related to distal and proximal arm function, and were assessed at the beginning, end of treatment and in a 6-weeks follow-up.</p> <p>Results</p> <p>Thirteen subjects successfully completed robot-assisted therapy, with significantly improved hand and arm motor functions, demonstrated by an average 3.00 points increase on the FM and 4.55 on the MI at the completion of the therapy (4.85 FM and 6.84 MI six weeks post-therapy). Improvements were observed both in distal and proximal components of the clinical scales at the completion of the study (2.00 FM wrist/hand, 2.55 FM shoulder/elbow, 2.23 MI hand and 4.23 MI shoulder/elbow). In addition, improvements in hand function were observed, as measured by the Motor Assessment Scale, grip force, and a decrease in arm muscle spasticity. These results were confirmed by motion data collected by the robot.</p> <p>Conclusions</p> <p>The results of this study show the feasibility of this robot-assisted therapy with patients presenting a large range of impairment levels. A significant homogeneous improvement in both hand and arm function was observed, which was maintained 6 weeks after end of the therapy.</p
    corecore