225 research outputs found

    Appearance of the weight-bearing lateral radiograph in retrocalcaneal bursitis

    Get PDF
    Background and purpose A retrocalcaneal bursitis is caused by repetitive impingement of the bursa between the Achilles tendon and the posterosuperior calcaneus. The bursa is situated in the posteroinferior corner of Kager's triangle (retrocalcaneal recess), which is a radiolucency with sharp borders on the lateral radiograph of the ankle. If there is inflammation, the fluid-filled bursa is less radiolucent, making it difficult to delineate the retrocalcaneal recess. We assessed whether the radiographic appearance of the retrocalcaneal recess on plain digital (filmless) radiographs could be used in the diagnosis of a retrocalcaneal bursitis. Methods Whether or not there was obliteration of the retrocalcaneal recess (yes/no) on 74 digital weight-bearing lateral radiographs of the ankle was independently assessed by 2 observers. The radiographs were from 24 patients (25 heels) with retrocalcaneal bursitis (confirmed on endoscopic calcaneoplasty); the control group consisted of 50 patients (59 heels). Results The sensitivity of the test was 83% for observer 1 and 79% for observer 2. Specificity was 100% and 98%, respectively. The kappa value of the interobserver reliability test was 0.86. For observer 1, intraobserver reliability was 0.96 and for observer 2 it was 0.92. Interpretation On digital weight-bearing lateral radiographs of a retrocalcaneal bursitis, the retrocalcaneal recess has a typical appearanc

    Social research on neglected diseases of poverty: Continuing and emerging themes

    Get PDF
    Copyright: © 2009 Manderson et al.Neglected tropical diseases (NTDs) exist and persist for social and economic reasons that enable the vectors and pathogens to take advantage of changes in the behavioral and physical environment. Persistent poverty at household, community, and national levels, and inequalities within and between sectors, contribute to the perpetuation and re-emergence of NTDs. Changes in production and habitat affect the physical environment, so that agricultural development, mining and forestry, rapid industrialization, and urbanization all result in changes in human uses of the environment, exposure to vectors, and vulnerability to infection. Concurrently, political instability and lack of resources limit the capacity of governments to manage environments, control disease transmission, and ensure an effective health system. Social, cultural, economic, and political factors interact and influence government capacity and individual willingness to reduce the risks of infection and transmission, and to recognize and treat disease. Understanding the dynamic interaction of diverse factors in varying contexts is a complex task, yet critical for successful health promotion, disease prevention, and disease control. Many of the research techniques and tools needed for this purpose are available in the applied social sciences. In this article we use this term broadly, and so include behavioral, population and economic social sciences, social and cultural epidemiology, and the multiple disciplines of public health, health services, and health policy and planning. These latter fields, informed by foundational social science theory and methods, include health promotion, health communication, and heath education

    The Effect of Map Boundary on Estimates of Landscape Resistance to Animal Movement

    Get PDF
    BACKGROUND: Artificial boundaries on a map occur when the map extent does not cover the entire area of study; edges on the map do not exist on the ground. These artificial boundaries might bias the results of animal dispersal models by creating artificial barriers to movement for model organisms where there are no barriers for real organisms. Here, we characterize the effects of artificial boundaries on calculations of landscape resistance to movement using circuit theory. We then propose and test a solution to artificially inflated resistance values whereby we place a buffer around the artificial boundary as a substitute for the true, but unknown, habitat. METHODOLOGY/PRINCIPAL FINDINGS: We randomly assigned landscape resistance values to map cells in the buffer in proportion to their occurrence in the known map area. We used circuit theory to estimate landscape resistance to organism movement and gene flow, and compared the output across several scenarios: a habitat-quality map with artificial boundaries and no buffer, a map with a buffer composed of randomized habitat quality data, and a map with a buffer composed of the true habitat quality data. We tested the sensitivity of the randomized buffer to the possibility that the composition of the real but unknown buffer is biased toward high or low quality. We found that artificial boundaries result in an overestimate of landscape resistance. CONCLUSIONS/SIGNIFICANCE: Artificial map boundaries overestimate resistance values. We recommend the use of a buffer composed of randomized habitat data as a solution to this problem. We found that resistance estimated using the randomized buffer did not differ from estimates using the real data, even when the composition of the real data was varied. Our results may be relevant to those interested in employing Circuitscape software in landscape connectivity and landscape genetics studies

    Evaluating The National Land Cover Database Tree Canopy and Impervious Cover Estimates Across the Conterminous United States: A Comparison with Photo-Interpreted Estimates

    Get PDF
    The 2001 National Land Cover Database (NLCD) provides 30-m resolution estimates of percentage tree canopy and percentage impervious cover for the conterminous United States. Previous estimates that compared NLCD tree canopy and impervious cover estimates with photo-interpreted cover estimates within selected counties and places revealed that NLCD underestimates tree and impervious cover. Based on these previous results, a wall-to-wall comprehensive national analysis was conducted to determine if and how NLCD derived estimates of tree and impervious cover varies from photo-interpreted values across the conterminous United States. Results of this analysis reveal that NLCD significantly underestimates tree cover in 64 of the 65 zones used to create the NCLD cover maps, with a national average underestimation of 9.7% (standard error (SE) = 1.0%) and a maximum underestimation of 28.4% in mapping zone 3. Impervious cover was also underestimated in 44 zones with an average underestimation of 1.4% (SE = 0.4%) and a maximum underestimation of 5.7% in mapping zone 56. Understanding the degree of underestimation by mapping zone can lead to better estimates of tree and impervious cover and a better understanding of the potential limitations associated with NLCD cover estimates

    Win-Win for Wind and Wildlife: A Vision to Facilitate Sustainable Development

    Get PDF
    Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW) than most other forms of energy production, making appropriate siting and mitigation particularly important. Species that require large unfragmented habitats and those known to avoid vertical structures are particularly at risk from wind development. Developing energy on disturbed lands rather than placing new developments within large and intact habitats would reduce cumulative impacts to wildlife. The U.S. Department of Energy estimates that it will take 241 GW of terrestrial based wind development on approximately 5 million hectares to reach 20% electricity production for the U.S. by 2030. We estimate there are ∼7,700 GW of potential wind energy available across the U.S., with ∼3,500 GW on disturbed lands. In addition, a disturbance-focused development strategy would avert the development of ∼2.3 million hectares of undisturbed lands while generating the same amount of energy as development based solely on maximizing wind potential. Wind subsidies targeted at favoring low-impact developments and creating avoidance and mitigation requirements that raise the costs for projects impacting sensitive lands could improve public value for both wind energy and biodiversity conservation

    13C labeling experiments at metabolic nonstationary conditions: An exploratory study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stimulus Response Experiments to unravel the regulatory properties of metabolic networks are becoming more and more popular. However, their ability to determine enzyme kinetic parameters has proven to be limited with the presently available data. In metabolic flux analysis, the use of <sup>13</sup>C labeled substrates together with isotopomer modeling solved the problem of underdetermined networks and increased the accuracy of flux estimations significantly.</p> <p>Results</p> <p>In this contribution, the idea of increasing the information content of the dynamic experiment by adding <sup>13</sup>C labeling is analyzed. For this purpose a small example network is studied by simulation and statistical methods. Different scenarios regarding available measurements are analyzed and compared to a non-labeled reference experiment. Sensitivity analysis revealed a specific influence of the kinetic parameters on the labeling measurements. Statistical methods based on parameter sensitivities and different measurement models are applied to assess the information gain of the labeled stimulus response experiment.</p> <p>Conclusion</p> <p>It was found that the use of a (specifically) labeled substrate will significantly increase the parameter estimation accuracy. An overall information gain of about a factor of six is observed for the example network. The information gain is achieved from the specific influence of the kinetic parameters towards the labeling measurements. This also leads to a significant decrease in correlation of the kinetic parameters compared to an experiment without <sup>13</sup>C-labeled substrate.</p

    Whose Sense of Place? A Political Ecology of Amenity Development

    Get PDF
    Using a political ecology framework, this chapter examines the ways in which sense of place and amenity migration contribute to alternative residential development, which relies on uneven use of conservation subdivision features in the American West. Using case studies from Central Oregon, this chapter demonstrates how senses of place and developer decision-making are tied to wider political economic changes. It highlights the roles that amenity migrants and developers, two groups that are sometimes identical, play in landscape transformations that simultaneously draw on a particular sense of place and commodify landscapes in new ways

    Probing the Flexibility of Large Conformational Changes in Protein Structures through Local Perturbations

    Get PDF
    Protein conformational changes and dynamic behavior are fundamental for such processes as catalysis, regulation, and substrate recognition. Although protein dynamics have been successfully explored in computer simulation, there is an intermediate-scale of motions that has proven difficult to simulate—the motion of individual segments or domains that move independently of the body the protein. Here, we introduce a molecular-dynamics perturbation method, the Rotamerically Induced Perturbation (RIP), which can generate large, coherent motions of structural elements in picoseconds by applying large torsional perturbations to individual sidechains. Despite the large-scale motions, secondary structure elements remain intact without the need for applying backbone positional restraints. Owing to its computational efficiency, RIP can be applied to every residue in a protein, producing a global map of deformability. This map is remarkably sparse, with the dominant sites of deformation generally found on the protein surface. The global map can be used to identify loops and helices that are less tightly bound to the protein and thus are likely sites of dynamic modulation that may have important functional consequences. Additionally, they identify individual residues that have the potential to drive large-scale coherent conformational change. Applying RIP to two well-studied proteins, Dihdydrofolate Reductase and Triosephosphate Isomerase, which possess functionally-relevant mobile loops that fluctuate on the microsecond/millisecond timescale, the RIP deformation map identifies and recapitulates the flexibility of these elements. In contrast, the RIP deformation map of α-lytic protease, a kinetically stable protein, results in a map with no significant deformations. In the N-terminal domain of HSP90, the RIP deformation map clearly identifies the ligand-binding lid as a highly flexible region capable of large conformational changes. In the Estrogen Receptor ligand-binding domain, the RIP deformation map is quite sparse except for one large conformational change involving Helix-12, which is the structural element that allosterically links ligand binding to receptor activation. RIP analysis has the potential to discover sites of functional conformational changes and the linchpin residues critical in determining these conformational states
    corecore