33 research outputs found

    A disulfide bridge in the calcium binding site of a polyester hydrolase increases its thermal stability and activity against polyethylene terephthalate

    Get PDF
    Elevated reaction temperatures are crucial for the efficient enzymatic degradation of polyethylene terephthalate (PET). A disulfide bridge was introduced to the polyester hydrolase TfCut2 to substitute its calcium binding site. The melting point of the resulting variant increased to 94.7°C (wild-type TfCut2: 69.8 °C) and its half-inactivation temperature to 84.6 °C (TfCut2: 67.3 °C). The variant D204C-E253C-D174R obtained by introducing further mutations at vicinal residues showed a temperature optimum between 75 and 80 °C compared to 65 and 70 °C of the wild-type enzyme. The variant caused a weight loss of PET films of 25.0 +/- 0.8% (TfCut2: 0.3 +/-0.1%) at 70 °C after a reaction time of 48 h. The results demonstrate that a highly efficient and calcium-independent thermostable polyester hydrolase can be obtained by replacing its calcium binding site with a disulfide bridge

    Effect of Tris, MOPS, and phosphate buffers on the hydrolysis of polyethylene terephthalate films by polyester hydrolases

    Get PDF
    The enzymatic degradation of polyethylene terephthalate (PET) occurs at mild reaction conditions and may find applications in environmentally friendly plastic waste recycling processes. The hydrolytic activity of the homologous polyester hydrolases LC cutinase (LCC) from a compost metagenome and TfCut2 from Thermobifida fusca KW3 against PET films was strongly influenced by the reaction medium buffers tris(hydroxymethyl)aminomethane (Tris), 3-(N-morpholino)propanesulfonic acid (MOPS), and sodium phosphate. LCC showed the highest initial hydrolysis rate of PET films in 0.2 M Tris, while the rate of TfCut2 was 2.1-fold lower at this buffer concentration. At a Tris concentration of 1 M, the hydrolysis rate of LCC decreased by more than 90% and of TfCut2 by about 80%. In 0.2 M MOPS or sodium phosphate buffer, no significant differences in the maximum initial hydrolysis rates of PET films by both enzymes were detected. When the concentration of MOPS was increased to 1 M, the hydrolysis rate of LCC decreased by about 90%. The activity of TfCut2 remained low compared to the increasing hydrolysis rates observed at higher concentrations of sodium phosphate buffer. In contrast, the activity of LCC did not change at different concentrations of this buffer. An inhibition study suggested a competitive inhibition of TfCut2 and LCC by Tris and MOPS. Molecular docking showed that Tris and MOPS interfered with the binding of the polymeric substrate in a groove located at the protein surface. A comparison of the Ki values and the average binding energies indicated MOPS as the stronger inhibitor of the both enzymes

    Multiglandular Hormone Deficiency in a Patient with Systemic Capillary Leak Syndrome

    Get PDF
    Systemic capillary leak syndrome (SCLS) is a rare but potentially fatal disorder characterized by a loss of fluid and proteins into the interstitial space leading to intravascular hypovolemia up to the point of hypovolemic shock. We report the case of a 64-year-old man with SCLS and multiple hormone abnormalities (primary hypothyroidism, hypoadrenalism, and hypogonadism), deficiency of hormone binding globulins, and hypogammaglobulinemia. The patient was successfully treated with intravenous immunoglobulins, theophylline, and terbutaline. Strikingly, with the dissolution of peripheral edema, hormone levels improved. To our knowledge, this is the first reported case of SCLS associated with polyglandular abnormalities

    Case Report Multiglandular Hormone Deficiency in a Patient with Systemic Capillary Leak Syndrome

    Get PDF
    Systemic capillary leak syndrome (SCLS) is a rare but potentially fatal disorder characterized by a loss of fluid and proteins into the interstitial space leading to intravascular hypovolemia up to the point of hypovolemic shock. We report the case of a 64-year-old man with SCLS and multiple hormone abnormalities (primary hypothyroidism, hypoadrenalism, and hypogonadism), deficiency of hormone binding globulins, and hypogammaglobulinemia. The patient was successfully treated with intravenous immunoglobulins, theophylline, and terbutaline. Strikingly, with the dissolution of peripheral edema, hormone levels improved. To our knowledge, this is the first reported case of SCLS associated with polyglandular abnormalities

    Functional characterization and structural modeling of synthetic polyester degrading hydrolases from Thermomonospora curvata

    Get PDF
    Thermomonospora curvata is a thermophilic actinomycete hylogenetically related to Thermobifida fusca that produces extracellular hydrolases capable of degrading synthetic polyesters. Analysis of the genome of T. curvata DSM43183 revealed two genes coding for putative polyester hydrolases Tcur1278 and Tcur0390 sharing 61% sequence identity with the T. fusca enzymes. Mature proteins of Tcur1278 and Tcur0390 were cloned and expressed in Escherichia coli TOP10. Tcur1278 and Tcur0390 exhibited an optimal reaction temperature against p-nitrophenyl butyrate at 60°C and 55°C, respectively. The optimal pH for both enzymes was determined at pH 8.5. Tcur1278 retained more than 80% and Tcur0390 less than 10% of their initial activity following incubation for 60 min at 55°C. Tcur0390 showed a higher hydrolytic activity against poly(ε-caprolactone) and polyethylene terephthalate (PET) nanoparticles compared to Tcur1278 at reaction temperatures up to 50°C. At 55°C and 60°C, hydrolytic activity against PET nanoparticles was only detected with Tcur1278. In silico modeling of the polyester hydrolases and docking with a model substrate composed of two repeating units of PET revealed the typical fold of α/β serine hydrolases with an exposed catalytic triad. Molecular dynamics simulations confirmed the superior thermal stability of Tcur1278 considered as the main reason for its higher hydrolytic activity on PET.:Introduction; Materials and methods; Results; Discussio

    Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: A multicentre study of 175 patients

    Get PDF
    BACKGROUND: The diagnostic and pathophysiological relevance of antibodies to aquaporin-4 (AQP4-Ab) in patients with neuromyelitis optica spectrum disorders (NMOSD) has been intensively studied. However, little is known so far about the clinical impact of AQP4-Ab seropositivity. OBJECTIVE: To analyse systematically the clinical and paraclinical features associated with NMO spectrum disorders in Caucasians in a stratified fashion according to the patients' AQP4-Ab serostatus. METHODS: Retrospective study of 175 Caucasian patients (AQP4-Ab positive in 78.3%). RESULTS: Seropositive patients were found to be predominantly female (p 1 myelitis attacks in the first year were identified as possible predictors of a worse outcome. CONCLUSION: This study provides an overview of the clinical and paraclinical features of NMOSD in Caucasians and demonstrates a number of distinct disease characteristics in seropositive and seronegative patients

    Update on the diagnosis and treatment of neuromyelitis optica spectrum disorders (NMOSD) – revised recommendations of the Neuromyelitis Optica Study Group (NEMOS). Part II: Attack therapy and long-term management

    Get PDF

    Interdependencies of Infrastructure Investment Decisions in Multi-Energy Systems—A Sensitivity Analysis for Urban Residential Areas

    No full text
    Considering the European Union (EU) climate targets, the heating sector should be decarbonized by 80% to 95% up to 2050. Thus, the macro-trends forecast increasing energy efficiency and focus on the use of renewable gas or the electrification of heat generation. This has implications for the business models of urban electricity and in particular natural gas distribution network operators (DNOs): When the energy demand decreases, a disproportionately long grid is operated, which can cause a rise of grid charges and thus the gas price. This creates a situation in which a self-reinforcing feedback loop starts, which increases the risk of gas grid defection. We present a mixed integer linear optimization model to analyze the interdependencies between the electricity and gas DNOs’ and the building owners’ investment decisions during the transformation path. The results of the investigation in a real grid area are used to validate the simulation setup of a sensitivity analysis of 27 types of building collectives and five grid topologies, which provides a systematic insight into the interrelated system. Therefore, it is possible to identify building and grid configurations that increase the risk of a complete gas grid shutdown and those that should be operated as a flexibility option in a future renewable energy system

    Sulfate assimilation in Rhodopseudomonas globiformis

    No full text
    Rhodopseudomonas globiformis is able to grow on sulfate as sole source of sulfur, but only at concentrations below 1 mM. Good growth was observed with thiosulfate, cysteine or methionine as sulfur sources. Tetrathionate supported slow growth. Sulfide and sulfite were growth inhibitory. Growth inhibition by higher sulfate concentrations was overcome by the addition of O-acetylserine, which is known as derepressor of sulfate-assimilating enzymes, and by reduced glutathione. All enzymes of the sulfate assimilation pathway. ATP-sulfurylase, adenylylphosphate-sulfotransferase, thiosulfonate reductase and O-acetylserine sulfhydrylase are present in R. globiformis. Sulfate was taken up by the cells and the sulfur incorporated into the amino acids cysteine, methionine and homocysteine. It is concluded, that the failure of R. globiformis to grow on higher concentrations of sulfate is caused by disregulation of the sulfate assimilation pathway. Some preliminary evidence for this view is given in comparing the activities of some of the involved enzymes after growth on different sulfur sources and by examining the effect of O-acetylserine on these activities

    Impact of Natural Gas Distribution Network Structure and Operator Strategies on Grid Economy in Face of Decreasing Demand

    No full text
    Currently, natural gas provides more than a third of the energy used in European residential buildings. As part of the general decline of fossil fuels, this gas consumption is predicted to drop in several countries by 25–100% by 2050. We model a decline in gas consumption in 57 urban German distribution grids looking for the influence of grid-specific factors and different distribution network operator (DNO) strategies on grid charges. We find a functional relationship between grid length and customer amount described by a power law, with an exponent correlated with structural grid parameters. The disordered structure inherent to grids typically results in a decline in grid costs much slower than the corresponding demand. We introduce a simplified yearly cash flow calculation model based on the power law and validate it against mixed integer linear optimization. A comparison of the total costs of operation and resulting grid charges for several scenarios and strategies estimates the effects on DNO business models. Depending on a combination of DNO’s strategy and customers’ exit pattern, grid charges may increase, accelerating the substitution of gas-bound technologies that might develop into a self-reinforcing feedback loop, leading to grid defection
    corecore