29 research outputs found

    Search for Nucleon and Dinucleon Decays with an Invisible Particle and a Charged Lepton in the Final State at the Super-Kamiokande Experiment

    Full text link
    Artículo escrito por muchos autores, sólo se referencian el primero, los autores que firman como Universidad Autónoma de Madrid y el grupo de colaboración en el caso de que aparezca en el artículoSearch results for nucleon decays p→e+X, p→μ+X, n→νγ (where X is an invisible, massless particle) as well as dinucleon decays np→e+ν, np→μ+ν, and np→τ+ν in the Super-Kamiokande experiment are presented. Using single-ring data from an exposure of 273.4 kton·yr, a search for these decays yields a result consistent with no signal. Accordingly, lower limits on the partial lifetimes of τp→e+X>7.9×1032yr, τp→μ+X>4.1×1032yr, τn→νγ>5.5×1032yr, τnp→e+ν>2.6×1032yr, τnp→μ+ν>2.2×1032yr, and τnp→τ+ν>2.9×1031yr at a 90% confidence level are obtained. Some of these searches are novelThe Super- Kamiokande experiment was built and has been operated with funding from the Japanese Ministry of Education, Culture, Sports, Science and Technology, the U.S. Department of Energy, and the U.S. National Science Foundatio

    Indirect search for dark matter from the Galactic Center and halo with the Super-Kamiokande detector

    Full text link
    ArtĂ­culo escrito por un elevado nĂşmero de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboraciĂłn, si le hubiere, y los autores pertenecientes a la UA

    A More Flavored Higgs boson in Supersymmetric models

    Get PDF
    A More flavored Higgs boson arises when the flavor structure encoded in SUSY extensions of the SM is transmited to the Higgs sector. The flavor-Higgs transmition mechanism can have a radiative or mixing origin, as it is illustrated with several examples, and can produce interesting Higgs signatures that can be probed at future high-energy colliders. Within the MSSM, the flavor mediation mechanism can be of radiative type, as it is realized trhough gaugino-slepton loops, which transmit the flavor structture of the soft-breaking sector to the Higgs bosons. In particular we focus on evaluating the contributions from the general trilinear terms to the lepton flavor violating Higgs (LFV) vertices. On the other hand, as an example of flavor mediation through mixing, we discuss an E_6 inspired multi-Higgs model, with an abelian flavor symmetry, where LFV as well as lepton flavor conserving Higgs effects are found to arise, though in this case at tree-level. We find that Tevatron and LHC can provide information on the flavor structure of these models through the detection of the LFV higgs mode h-> tau+mu, while NLC can perform high-precision measurements of the LFC mode h-> tau tau.Comment: 17 pages, 5 tables, 3 figures; corrected mistake in last section, results changed but conclusions remmai

    Underground Neutrino Detectors for Particle and Astroparticle Science: the Giant Liquid Argon Charge Imaging ExpeRiment (GLACIER)

    Full text link
    The current focus of the CERN program is the Large Hadron Collider (LHC), however, CERN is engaged in long baseline neutrino physics with the CNGS project and supports T2K as recognized CERN RE13, and for good reasons: a number of observed phenomena in high-energy physics and cosmology lack their resolution within the Standard Model of particle physics; these puzzles include the origin of neutrino masses, CP-violation in the leptonic sector, and baryon asymmetry of the Universe. They will only partially be addressed at LHC. A positive measurement of sin⁡22θ13>0.01\sin^22\theta_{13}>0.01 would certainly give a tremendous boost to neutrino physics by opening the possibility to study CP violation in the lepton sector and the determination of the neutrino mass hierarchy with upgraded conventional super-beams. These experiments (so called ``Phase II'') require, in addition to an upgraded beam power, next generation very massive neutrino detectors with excellent energy resolution and high detection efficiency in a wide neutrino energy range, to cover 1st and 2nd oscillation maxima, and excellent particle identification and π0\pi^0 background suppression. Two generations of large water Cherenkov detectors at Kamioka (Kamiokande and Super-Kamiokande) have been extremely successful. And there are good reasons to consider a third generation water Cherenkov detector with an order of magnitude larger mass than Super-Kamiokande for both non-accelerator (proton decay, supernovae, ...) and accelerator-based physics. On the other hand, a very massive underground liquid Argon detector of about 100 kton could represent a credible alternative for the precision measurements of ``Phase II'' and aim at significantly new results in neutrino astroparticle and non-accelerator-based particle physics (e.g. proton decay).Comment: 31 pages, 14 figure

    Tribimaximal Neutrino Mixing and a Relation Between Neutrino- and Charged Lepton-Mass Spectra

    Get PDF
    Brannen has recently pointed out that the observed charged lepton masses satisfy the relation m_e +m_\mu +m_\tau = {2/3} (\sqrt{m_e}+\sqrt{m_\mu}+\sqrt{m_\tau})^2, while the observed neutrino masses satisfy the relation m_{\nu 1} +m_{\nu 2} +m_{\nu 3} = {2/3} (-\sqrt{m_{\nu 1}}+\sqrt{m_{\nu 2}}+\sqrt{m_{\nu 3}})^2. It is discussed what neutrino Yukawa interaction form is favorable if we take the fact pointed out by Brannen seriously.Comment: 13 pages, presentation modifie
    corecore