25 research outputs found

    Cancer Pharmacogenomics and Pharmacoepidemiology: Setting a Research Agenda to Accelerate Translation

    Get PDF
    Recent advances in genomic research have demonstrated a substantial role for genomic factors in predicting response to cancer therapies. Researchers in the fields of cancer pharmacogenomics and pharmacoepidemiology seek to understand why individuals respond differently to drug therapy, in terms of both adverse effects and treatment efficacy. To identify research priorities as well as the resources and infrastructure needed to advance these fields, the National Cancer Institute (NCI) sponsored a workshop titled “Cancer Pharmacogenomics: Setting a Research Agenda to Accelerate Translation” on July 21, 2009, in Bethesda, MD. In this commentary, we summarize and discuss five science-based recommendations and four infrastructure-based recommendations that were identified as a result of discussions held during this workshop. Key recommendations include 1) supporting the routine collection of germline and tumor biospecimens in NCI-sponsored clinical trials and in some observational and population-based studies; 2) incorporating pharmacogenomic markers into clinical trials; 3) addressing the ethical, legal, social, and biospecimen- and data-sharing implications of pharmacogenomic and pharmacoepidemiologic research; and 4) establishing partnerships across NCI, with other federal agencies, and with industry. Together, these recommendations will facilitate the discovery and validation of clinical, sociodemographic, lifestyle, and genomic markers related to cancer treatment response and adverse events, and they will improve both the speed and efficiency by which new pharmacogenomic and pharmacoepidemiologic information is translated into clinical practice

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    Citation Capture: Enhancing Understanding of the Use of Unique and Distinct Collections within Academic Research and the Research Outputs Produced as a Result

    No full text
    This report was commissioned by Research Libraries UK (RLUK), The National Archives (TNA) and Jisc to kickstart a discussion about citation practices and how to standardise references to unique and distinct collections (UDC’s) held in repositories across the UK. Every year, tens of thousands of citations are included within the footnotes and endnotes of academic publications despite the fact that a widely agreed and coherent system of referencing UDC repositories does not currently exist. Creating a more consistent framework for how academics cite UDC collections will deliver two main benefits. By standardising references to collections and the materials within them, it will be easier for archivists, librarians and collection managers to gauge usage and to take informed collection management decisions. Secondly, it will provide valuable metrics for repositories to evidence impact and make the case for funding

    Hand Rim Wheelchair Propulsion Training Using Biomechanical Real-Time Visual Feedback Based on Motor Learning Theory Principles

    No full text
    Background/Objective: As considerable progress has been made in laboratory-based assessment of manual wheelchair propulsion biomechanics, the necessity to translate this knowledge into new clinical tools and treatment programs becomes imperative. The objective of this study was to describe the development of a manual wheelchair propulsion training program aimed to promote the development of an efficient propulsion technique among long-term manual wheelchair users. Methods: Motor learning theory principles were applied to the design of biomechanical feedback-based learning software, which allows for random discontinuous real-time visual presentation of key spatio-temporal and kinetic parameters. This software was used to train a long-term wheelchair user on a dynamometer during 3 low-intensity wheelchair propulsion training sessions over a 3-week period. Biomechanical measures were recorded with a SmartWheel during over ground propulsion on a 50-m level tile surface at baseline and 3 months after baseline. Results: Training software was refined and administered to a participant who was able to improve his propulsion technique by increasing contact angle while simultaneously reducing stroke cadence, mean resultant force, peak and mean moment out of plane, and peak rate of rise of force applied to the pushrim after training. Conclusions: The proposed propulsion training protocol may lead to favorable changes in manual wheelchair propulsion technique. These changes could limit or prevent upper limb injuries among manual wheelchair users. In addition, many of the motor learning theory-based techniques examined in this study could be applied to training individuals in various stages of rehabilitation to optimize propulsion early on. © 2010 by the American Paraplegia Society
    corecore