1,675 research outputs found

    Variaciones en el desarrollo, influencias socioculturales, y dificultades en el aprendizaje de las matemáticas

    Get PDF
    Es sabido que la mayoría de los niños entran en la escuela con conocimientos y recursos fundacionales para su aprendizaje matemático. Sin embargo, esta no es la historia completa. Resultados de investigaciones revelan enormes diferencias en los niveles de competencia matemática de los niños pequeños, y estas diferencias parecen ser más acusadas en los Estados Unidos que en algunos otros países (por ejemplo, China) (Starkey y Klein, 2008). En este artículo se describen los tipos de diferencias que se dan y se ofrece una revisión sobre lo que se sabe acerca de la naturaleza y las fuentes de las variaciones en el desarrollo entre los niños

    Fundamentos cognitivos para la iniciación en el aprendizaje de las matemáticas

    Get PDF
    En este artículo, sobre fundamentos cognitivos para la iniciación en el aprendizaje de las matemáticas, se realiza una revisión de investigaciones sobre el aprendizaje de las matemáticas en educación infantil. Esta revisión está estructurada según los siguientes apartados: Evidencias sobre la comprensión temprana del número, desarrollo del pensamiento espacial y la geometría, desarrollo de la medición, y regulación de la conducta y la atención

    Contenido matemático fundacional para el aprendizaje en los primeros años

    Get PDF
    En este capítulo se describe el contenido matemático fundacional accesible para niñas y niños pequeños. El foco en este capítulo está puesto en las propias ideas matemáticas, más que en la enseñanza y el aprendizaje de las mismas. Estas ideas matemáticas se dan por sentadas por los adultos, pero son sorprendentemente profundas y complejas. Hay dos áreas fundamentales en las matemáticas para la primera infancia: (1) el número y (2) la geometría y la medición, tal como identifican los Focos Currículares del NCTM y subrraya este comité. También hay importantes procesos de razonamiento matemático en que los niños deben implicarse. Este capítulo también describe algunas de las conexiones más importantes de las matemáticas infantiles con las matemáticas posteriores

    Communicating Science Effectively: A Research Agenda

    Get PDF
    SUMMARYScience and technology are embedded in virtually every aspect of modern life. As a result, people face an increasing need to integrate information from science with their personal values and other considerations as they make important life decisions about vaccinating their children and other medical care, the safety of foods, what to do about climate change, and many other issues. Communicating science effectively, however, is a complex task and an acquired skill. Moreover, the approaches to communicating science that will be most effective for specific audiences and circumstances often are not obvious. Fortunately, an expanding science base from diverse disciplines can support science communicators in making these determinations. The purpose of this report is to offer a research agenda for science communicators and researchers seeking to apply this research and fill gaps in knowledge about how to communicate effectively about science, with a particular focus on issues that are contentious in the public sphere. Examples include climate change, stem cells, nanotechnology, vaccines, hydraulic fracturing, genetically modified organisms, nuclear energy, obesity, education policy, and the teaching of evolution and climate change in K-12 schools. To inform the research agenda, the study committee sought to identify important influences—psychological, economic, political, social, cultural, and mediarelated—on how science associated with such issues is understood, perceived, and used. For the purposes of this report, “science communication” is defined as the exchange of information and viewpoints about science to achieve a goal or objective such as fostering greater understanding of science and scientific methods or gaining greater insight into diverse public views and concerns about the science related to a contentious issue

    Fundamentos cognitivos para la iniciación en el aprendizaje de las matemáticas

    Get PDF
    In this article, about cognitive foundations for early mathematics learning, we make a review of research on the learning of mathematics in the early childhood. We structure this review in the following sections: evidence for early understanding of number, development of spatial thinking and geometry, development of measurement, and regulating behavior and attention.En este artículo, sobre fundamentos cognitivos para la iniciación en el aprendizaje de las matemáticas, se realiza una revisión de investigaciones sobre el aprendizaje de las matemáticas en educación infantil. Esta revisión está estructurada según los siguientes apartados: Evidencias sobre la comprensión temprana del número, desarrollo del pensamiento espacial y la geometría, desarrollo de la medición, y regulación de la conducta y la atención

    Contenido matemático fundacional para el aprendizaje en los primeros años

    Get PDF
    This chapter describes the foundational and achievable mathematics content for young children. The focus of this chapter is on the mathematical ideas themselves rather than on the teaching or learning of these ideas. These mathematical ideas are often taken for granted by adults, but they are surprisingly deep and complex. There are two fundamental areas of mathematics for young children: (1) number and (2) geometry and measurement as identified in NCTM's Curriculum Focal Points and outlined by this committee. There are also important mathematical reasoning processes that children must engage in. This chapter also describes some of the most important connections of the mathematics for young children to later mathematics. In the area of number, a fundamental idea is the connection between the counting numbers as a list and for describing how many objects are in a set. We can represent arbitrarily large counting numbers in an efficient, systematic way by means of the remarkable decimal system (base 10). We can use numbers to compare quantities without matching the quantities directly. The operations of addition and subtraction allow us to describe how amounts are related before and after combining or taking away, how parts and totals are related, and to say precisely how two amounts compare. In the area of geometry and measurement, a fundamental idea is that geometric shapes have different parts and aspects that can be described, and they can be composed and decomposed. To measure the size of something, one first selects a specific measurable attribute of the thing, and then views the thing as composed of some number of units. The shapes of geometry can be viewed as idealized and simplified approximations of objects in the world. Space has structure that derives from movement through space and from relative location within space. An important way to think about the structure of 2-D and 3-D space comes from viewing rectangles as composed of rows and columns of squares and viewing box shapes as composed of layers of rows and columns of cubes.En este capítulo se describe el contenido matemático fundacional accesible para niñas y niños pequeños. El foco en este capítulo está puesto en las propias ideas matemáticas, más que en la enseñanza y el aprendizaje de las mismas. Estas ideas matemáticas se dan por sentadas por los adultos, pero son sorprendentemente profundas y complejas. Hay dos áreas fundamentales en las matemáticas para la primera infancia: (1) el número y (2) la geometría y la medición, tal como identifican los Focos Currículares del NCTM y subrraya este comité. También hay importantes procesos de razonamiento matemático en que los niños deben implicarse. Este capítulo también describe algunas de las conexiones más importantes de las matemáticas infantiles con las matemáticas posteriores.  En el área del número, una idea fundamental es la conexión entre los números de contar como secuencia y en la descripción de cuántos objetos hay en un conjunto. Podemos representar números de contar arbitrariamente grandes de una manera eficiente y sistemática, mediante el notable sistema decimal de numeración (de base 10). Podemos utilizar los números para comparar cantidades sin emparejarlas directamente (sin usar la correspondencia uno a uno). Las operaciones de adición y sustracción nos permiten describir cómo se relacionan las cantidades antes y después de combinarlas o quitar una de otra, cómo se relacionan las partes y el todo, y expresar con precisión la comparación de dos cantidades. En el ámbito de la geometría y la medición, una idea fundamental es que las formas geométricas tienen diferentes partes y aspectos que pueden describirse, y que pueden componerse y descomponerse. Para medir el tamaño de algo, primero se elige un atributo medible específico del objeto, y luego se considera el objeto como composición de un determinado número de unidades. Las formas de la geometría se pueden ver como aproximaciones idealizadas y simplificadas de objetos del mundo. El espacio tiene una estructura que deriva del movimiento a través del espacio y de la posición relativa dentro del espacio. Una forma importante de pensar en la estructura del espacio bidimensional y tridimensional proviene de considerar los rectángulos compuestos de filas y columnas de cuadrados y visualizar la forma de una caja como compuesta de capas formadas por filas y columnas de cubos

    Appropriateness of the probability approach with a nutrient status biomarker to assess population inadequacy: a study using vitamin D

    Get PDF
    Background: There are questions about the appropriate method for the accurate estimation of the population prevalence of nutrient inadequacy on the basis of a biomarker of nutrient status (BNS). Objective: We determined the applicability of a statistical probability method to a BNS, specifically serum 25-hydroxyvitamin D [25(OH)D]. The ability to meet required statistical assumptions was the central focus. Design: Data on serum 25(OH)D concentrations in adults aged 19–70 y from the 2005–2006 NHANES were used (n = 3871). An Institute of Medicine report provided reference values. We analyzed key assumptions of symmetry, differences in variance, and the independence of distributions. We also corrected observed distributions for within-person variability (WPV). Estimates of vitamin D inadequacy were determined. Results:We showed that the BNS [serum 25(OH)D] met the criteria to use the method for the estimation of the prevalence of inadequacy. The difference between observations corrected compared with uncorrected for WPV was small for serum 25(OH)D but, nonetheless, showed enhanced accuracy because of correction. The method estimated a 19% prevalence of inadequacy in this sample, whereas misclassification inherent in the use of the more traditional 97.5th percentile high-end cutoff inflated the prevalence of inadequacy (36%). Conclusions: When the prevalence of nutrient inadequacy for a population is estimated by using serum 25(OH)D as an example of a BNS, a statistical probability method is appropriate and more accurate in comparison with a high-end cutoff. Contrary to a common misunderstanding, the method does not overlook segments of the population. The accuracy of population estimates of inadequacy is enhanced by the correction of observed measures for WPV

    Issues for Science and Engineering Researchers in the Digital Age

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/88866/1/2001_Researchers_in_the_Digital_Age.pd

    Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments

    Get PDF
    How will the global atmosphere and climate be protected? Achieving net-zero CO2 emissions will require carbon capture and storage (CCS) to reduce current GHG emission rates, and negative emissions technology (NET) to recapture previously emitted greenhouse gases. Delivering NET requires radical cost and regulatory innovation to impact on climate mitigation. Present NET exemplars are few, are at small-scale and not deployable within a decade, with the exception of rock weathering, or direct injection of CO2 into selected ocean water masses. To keep warming less than 2°C, bioenergy with CCS (BECCS) has been modelled but does not yet exist at industrial scale. CCS already exists in many forms and at low cost. However, CCS has no political drivers to enforce its deployment. We make a new analysis of all global CCS projects and model the build rate out to 2050, deducing this is 100 times too slow. Our projection to 2050 captures just 700 Mt CO2 yr−1, not the minimum 6000 Mt CO2 yr−1 required to meet the 2°C target. Hence new policies are needed to incentivize commercial CCS. A first urgent action for all countries is to commercially assess their CO2 storage. A second simple action is to assign a Certificate of CO2 Storage onto producers of fossil carbon, mandating a progressively increasing proportion of CO2 to be stored. No CCS means no 2°C.This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'
    corecore