172 research outputs found

    The Long Term Effects of Angiotensin Converting Enzyme Inhibition and Metabolic Control on Cardiovascular and Renal Outcomes in Hypertensive Type 2 Diabetic Patients

    Get PDF
    Long-term effects of angiotensin-converting enzyme inhibition and metabolic control in hypertensive type 2 diabetic patients.BackgroundIn hypertensive type 2 diabetic patients, treatment with angiotensin-converting enzyme (ACE) inhibitors is associated with a lower incidence of cardiovascular events than those treated with calcium channel-blocking agents. However, the long-term renal effects of ACE inhibitors in these patients remain inconclusive. In 1989, we commenced a placebo-controlled, double-blind, randomized study to examine the anti-albuminuric effects of enalapril versus nifedipine (slow release) in 102 hypertensive, type 2 diabetic patients. These patients have been followed up for a mean trial duration of 5.5 ± 2.2 years. We examined the determinants, including the effect of ACE inhibition on clinical outcomes in these patients.MethodsAfter a six-week placebo-controlled, run-in period, 52 patients were randomized double-blind to receive nifedipine (slow release) and 50 patients to receive enalapril. After the one-year analysis, which confirmed the superior anti-albuminuric effects of enalapril (-54%) over nifedipine (+11%), all patients were continued on their previously assigned treatment with informed consent. They were subdivided into normoalbuminuric (N = 43), microalbuminuric (N = 34), and macroalbuminuric (N = 25) groups based on two of three 24-hour urinary albumin excretion (UAE) measurements during the run-in period. Renal function was shown by the 24-hour UAE, creatinine clearance (CCr), and the regression coefficient of the yearly plasma creatinine reciprocal (β-1/Cr). Clinical endpoints were defined as death, cardiovascular events, and/or renal events (need for renal replacement therapy or doubling of baseline plasma creatinine).ResultsIn the whole group, patients treated with enalapril were more likely to revert to being normoalbuminuric (23.8 vs. 15.4%), and fewer of them developed macroalbuminuria (19.1 vs. 30.8%) compared with the nifedipine-treated patients (P < 0.05). In the microalbuminuric group, treatment with enalapril (N = 21) was associated with a 13.0% (P < 0.01) reduction in 24-hour UAE compared with a 17.3% increase in the nifedipine group (N = 13). In the macroalbuminuric patients, enalapril treatment (N = 11) was associated with stabilization compared with a decline in renal function in the nifedipine group, as shown by the β-1/Cr (0.65 ± 4.29 vs. -1.93 ± 2.35 1/μmol × 10-3, P < 0.05) after adjustment for baseline values. Compared with the normoalbuminuric and microalbuminuric patients, those with macroalbuminuria had the lowest mean CCr (75.5 ± 24.1 vs. 63.5 ± 21.3 vs. 41.9 ± 18.5 mL/min, P < 0.001) and the highest frequency of clinical events (4.7 vs. 5.9 vs. 52%, P < 0.001). On multivariate analysis, β-1/Cr (R2 = 0.195, P < 0.001) was independently associated with baseline HbA1c (β = -0.285, P = 0.004), whereas clinical outcomes (R2 = 0.176, P < 0.001) were independently related to the mean low-density lipoprotein cholesterol (β = 2.426, P = 0.018), high-density lipoprotein cholesterol (β = -8.797, P = 0.03), baseline UAE (β = 0.002, P = 0.04), and mean CCr during treatment (β = -0.211, P = 0.006).ConclusionIn this prospective cohort analysis involving 102 hypertensive, type 2 diabetic patients with varying degrees of albuminuria followed up for a mean duration of five years, we observed the importance of good metabolic and blood pressure control on the progression of albuminuria and renal function. Treatment with enalapril was associated with a greater reduction in albuminuria than with nifedipine in the entire patient group, and especially in those with microalbuminuria. In the macroalbuminuric patients, the rate of deterioration in renal function was also attenuated by treatment with enalapril

    Hypertension in children with chronic kidney disease: pathophysiology and management

    Get PDF
    Arterial hypertension is very common in children with all stages of chronic kidney disease (CKD). While fluid overload and activation of the renin–angiotensin system have long been recognized as crucial pathophysiological pathways, sympathetic hyperactivation, endothelial dysfunction and chronic hyperparathyroidism have more recently been identified as important factors contributing to CKD-associated hypertension. Moreover, several drugs commonly administered in CKD, such as erythropoietin, glucocorticoids and cyclosporine A, independently raise blood pressure in a dose-dependent fashion. Because of the deleterious consequences of hypertension on the progression of renal disease and cardiovascular outcomes, an active screening approach should be adapted in patients with all stages of CKD. Before one starts antihypertensive treatment, non-pharmacological options should be explored. In hemodialysis patients a low salt diet, low dialysate sodium and stricter dialysis towards dry weight can often achieve adequate blood pressure control. Angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers are first-line therapy for patients with proteinuria, due to their additional anti-proteinuric properties. Diuretics are a useful alternative for non-proteinuric patients or as an add-on to renin–angiotensin system blockade. Multiple drug therapy is often needed to maintain blood pressure below the 90th percentile target, but adequate blood pressure control is essential for better renal and cardiovascular long-term outcomes

    Chronic kidney disease in children: the global perspective

    Get PDF
    In contrast to the increasing availability of information pertaining to the care of children with chronic kidney disease (CKD) from large-scale observational and interventional studies, epidemiological information on the incidence and prevalence of pediatric CKD is currently limited, imprecise, and flawed by methodological differences between the various data sources. There are distinct geographic differences in the reported causes of CKD in children, in part due to environmental, racial, genetic, and cultural (consanguinity) differences. However, a substantial percentage of children develop CKD early in life, with congenital renal disorders such as obstructive uropathy and aplasia/hypoplasia/dysplasia being responsible for almost one half of all cases. The most favored end-stage renal disease (ESRD) treatment modality in children is renal transplantation, but a lack of health care resources and high patient mortality in the developing world limits the global provision of renal replacement therapy (RRT) and influences patient prevalence. Additional efforts to define the epidemiology of pediatric CKD worldwide are necessary if a better understanding of the full extent of the problem, areas for study, and the potential impact of intervention is desired

    Therapeutic strategies to slow chronic kidney disease progression

    Get PDF
    Childhood chronic kidney disease commonly progresses toward end-stage renal failure, largely independent of the underlying disorder, once a critical impairment of renal function has occurred. Hypertension and proteinuria are the most important independent risk factors for renal disease progression. Therefore, current therapeutic strategies to prevent progression aim at controlling blood pressure and reducing urinary protein excretion. Renin-angiotensin-system (RAS) antagonists preserve kidney function not only by lowering blood pressure but also by their antiproteinuric, antifibrotic, and anti-inflammatory properties. Intensified blood pressure control, probably aiming for a target blood pressure below the 75th percentile, may exert additional renoprotective effects. Other factors contributing in a multifactorial manner to renal disease progression include dyslipidemia, anemia, and disorders of mineral metabolism. Measures to preserve renal function should therefore also comprise the maintenance of hemoglobin, serum lipid, and calcium-phosphorus ion product levels in the normal range

    Complement in glomerular injury

    Get PDF
    In recent years, research into the role of complement in the immunopathogenesis of renal disease has broadened our understanding of the fragile balance between the protective and harmful functions of the complement system. Interventions into the complement system in various models of immune-mediated renal disease have resulted in both favourable and unfavourable effects and will allow us to precisely define the level of the complement cascade at which a therapeutic intervention will result in an optimal effect. The discovery of mutations of complement regulatory molecules has established a role of complement in the haemolytic uremic syndrome and membranoproliferative glomerulonephritis, and genotyping for mutations of the complement system are already leaving the research laboratory and have entered clinical practice. These clinical discoveries have resulted in the creation of relevant animal models which may provide crucial information for the development of highly specific therapeutic agents. Research into the role of complement in proteinuria has helped to understand pathways of inflammation which ultimately lead to renal failure irrespective of the underlying renal disease and is of major importance for the majority of renal patients. Complement science is a highly exciting area of translational research and hopefully will result in meaningful therapeutic advances in the near future

    Genetic polymorphisms of the RAS-cytokine pathway and chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) in children is irreversible. It is associated with renal failure progression and atherosclerotic cardiovascular (CV) abnormalities. Nearly 60% of children with CKD are affected since birth with congenital or inherited kidney disorders. Preliminary evidence primarily from adult CKD studies indicates common genetic risk factors for CKD and atherosclerotic CV disease. Although multiple physiologic pathways share common genes for CKD and CV disease, substantial evidence supports our attention to the renin angiotensin system (RAS) and the interlinked inflammatory cascade because they modulate the progressions of renal and CV disease. Gene polymorphisms in the RAS-cytokine pathway, through altered gene expression of inflammatory cytokines, are potential factors that modulate the rate of CKD progression and CV abnormalities in patients with CKD. For studying such hypotheses, the cooperative efforts among scientific groups and the availability of robust and affordable technologies to genotype thousands of single nucleotide polymorphisms (SNPs) across the genome make genome-wide association studies an attractive paradigm for studying polygenic diseases such as CKD. Although attractive, such studies should be interpreted carefully, with a fundamental understanding of their potential weaknesses. Nevertheless, whole-genome association studies for diabetic nephropathy and future studies pertaining to other types of CKD will offer further insight for the development of targeted interventions to treat CKD and associated atherosclerotic CV abnormalities in the pediatric CKD population

    The natural history of, and risk factors for, progressive Chronic Kidney Disease (CKD): the Renal Impairment in Secondary care (RIISC) study; rationale and protocol

    Get PDF
    corecore