17 research outputs found

    Memory B Cell Antibodies to HIV-1 gp140 Cloned from Individuals Infected with Clade A and B Viruses

    Get PDF
    Understanding the antibody response to HIV-1 in humans that show broad neutralizing serologic activity is a crucial step in trying to reproduce such responses by vaccination. Investigating antibodies with cross clade reactivity is particularly important as these antibodies may target conserved epitopes on the HIV envelope gp160 protein. To this end we have used a clade B YU-2 gp140 trimeric antigen and single-cell antibody cloning methods to obtain 189 new anti-gp140 antibodies representing 51 independent B cell clones from the IgG memory B cells of 3 patients infected with HIV-1 clade A or B viruses and exhibiting broad neutralizing serologic activity. Our results support previous findings showing a diverse antibody response to HIV gp140 envelope protein, characterized by differentially expanded B-cell clones producing highly hypermutated antibodies with heterogenous gp140-specificity and neutralizing activity. In addition to their high-affinity binding to the HIV spike, the vast majority of the new anti-gp140 antibodies are also polyreactive. Although none of the new antibodies are as broad or potent as VRC01 or PG9, two clonally-related antibodies isolated from a clade A HIV-1 infected donor, directed against the gp120 variable loop 3, rank in the top 5% of the neutralizers identified in our large collection of 185 unique gp140-specific antibodies in terms of breadth and potency

    Value of monoenergetic dual-energy CT (DECT) for artefact reduction from metallic orthopedic implants in post-mortem studies

    Full text link
    OBJECTIVES: The aim of this ex vivo study was to assess the performance of monoenergetic dual-energy CT (DECT) reconstructions to reduce metal artefacts in bodies with orthopedic devices in comparison with standard single-energy CT (SECT) examinations in forensic imaging. Forensic and clinical impacts of this study are also discussed. MATERIALS AND METHODS: Thirty metallic implants in 20 consecutive cadavers with metallic implants underwent both SECT and DECT with a clinically suitable scanning protocol. Extrapolated monoenergetic DECT images at 64, 69, 88, 105, 120, and 130 keV and individually adjusted monoenergy for optimized image quality (OPTkeV) were generated. Image quality of the seven monoenergetic images and of the corresponding SECT image was assessed qualitatively and quantitatively by visual rating and measurements of attenuation changes induced by streak artefact. RESULTS: Qualitative and quantitative analyses showed statistically significant differences between monoenergetic DECT extrapolated images and SECT, with improvements in diagnostic assessment in monoenergetic DECT at higher monoenergies. The mean value of OPTkeV was 137.6 ± 4.9 with a range of 130 to 148 keV. CONCLUSIONS: This study demonstrates that monoenergetic DECT images extrapolated at high energy levels significantly reduce metallic artefacts from orthopedic implants and improve image quality compared to SECT examination in forensic imaging

    Spectral properties of abdominal tissues on dual-energy computed tomography and the effects of contrast agent

    Full text link
    Background/Aim: Multiparametric dual energy comptuted tomography (CT) imaging allows for multidimensional tissue characterization beyond the measurement of Hounsfield units. The purpose of this study was to evaluate multiple imaging parameters for different abdominal organs in dual energy CT (DECT) and analyze the effects of the contrast agent on these different parameters and provide normal values for characterization of parenchymatous organs. Patients and Methods: This retrospective analysis included a total of 484 standardized DECT scans of the abdomen. Hounsfield Units (HU), rho (electron density relative to water), Zeff (effective atomic number) and FF (fat fraction) were evaluated for liver, spleen, kidney, muscle, fat-tissue. Independent generalized estimation equation models were fitted. Results: In DECT imaging there is only little difference in mean HUmixed for parenchymatous abdominal organs. Analysis including Zeff, rho and FF allows for better discrimination while a large overlap remains for liver, spleen and muscle. Including multidimensional analysis and the effects of contrast medium further enhances tissue characterization. Small differences remain for liver and spleen. Conclusion: Organ characterization using multiparametric dual energy CT analysis is possible. An increased number of parameters obtained from DECT improves organ characterization. To our knowledge this is the first attempt to provide normal values for characterization of parenchymatous organs

    The influence of 1.5 and 3 T magnetic resonance unit magnetic fields on the movement of steel-jacketed projectiles in ordnance gelatin

    No full text
    Purpose: Ferromagnetic bullets can move in air or gelatin in magnetic resonance (MR) units. According to our experience, ferromagnetic bullets do not always present consistent movement. We examined factors affecting ferromagnetic projectile movement in a 1.5T and a 3T MR unit, focusing in this study on the steel-jacketed Swiss ordnance ammunition 7.5mm GP11 Suisse. Methods: Five 7.5mm GP11 Suisse bullets were embedded horizontally and vertically in 10% ordnance gelatin phantoms. Before and after exposing the bullets to 1.5T (Siemens) and 3T (Philips) MR units each bullet's position was documented by a CT scan. In a second phase, the magnetic polarization of the bullets in relation to the MR units was measured by a dry magnetic portable compass (Suunto). Results: Our results showed that the displacement of the bullets increased when subjected to a stronger magnetic field (max. Movement 1.5T: 24.4mm vs. 3T: 101.5mm) and that the position, i.e. orientation of the bullet toward the gantry, strongly influenced its mobility (horizontally embedded projectiles showed poor movement, vertically placed ones strong movement). One of the bullets presented a 180° rotation in the 3T MR unit. Magnetization and changing of the polarization of these ferromagnetic bullets is possible when subjected to MR units. Conclusion: In conclusion, the location of a bullet, and its orientation toward the gantry must be taken into account when assessing the risk of performing an MR examination on a gunshot victim in clinical and in forensic cases

    Influence of Radiation Dose, Photon Energy, and Reconstruction Kernel on rho/z Analysis in Spectral Computer Tomography: A Phantom Study

    Full text link
    Background/aim: The effective atomic number (Zeff) and electron density relative to water (ρe or Rho) of elements can be derived in dual-energy computed tomography (DECT). The aim of this phantom study was to investigate the effect of different photon energies, radiation doses, and reconstruction kernels on Zeff and Rho measured in DECT. Materials and methods: An anthropomorphic head phantom including five probes of known composition was scanned under three tube-voltage combinations in DECT: Sn140/100 kV, 140/80 kV and Sn140/80 kV with incremented radiation doses. Raw data were reconstructed with four reconstruction kernels (I30, I40, I50, and I70). Rho and Zeff were measured for each probe for all possible combinations of scan and reconstruction parameters. Results: DECT-based Rho and Zeff closely approached the reference values with a mean and maximum error of 1.7% and 6.8%, respectively. Rho was lower for 140/80 kV compared with Sn140/100 kV and Sn140/80 kV with differences being 0.009. Zeff differed among all tube voltages with the most prominent difference being 0.28 between 140/80 kV and Sn140/100 kV. Zeff was lower in I70 compared with those of I30 and I40 with a difference of 0.07. Varying radiation dose yielded a variation of 0.0002 in Rho and 0.03 in Z, both considered negligible in practice. Conclusion: DECT comprises a feasible method for the extraction of material-specific information. Slight variations should be taken into account when different radiation doses, photon energies, and kernels are applied; however, they are considered small and in practice not crucial for an effective tissue differentiation. Keywords: Tomography; X-ray computed; image reconstruction; radiation dosage
    corecore