37 research outputs found

    A Distance-Aware Replica Adaptive Data Gathering Protocol for Delay Tolerant Mobile Sensor Networks

    Get PDF
    In Delay Tolerant Mobile Sensor Networks (DTMSNs) that have the inherent features of intermitted connectivity and frequently changing network topology it is reasonable to utilize multi-replica schemes to improve the data gathering performance. However, most existing multi-replica approaches inject a large amount of message copies into the network to increase the probability of message delivery, which may drain each mobile node’s limited battery supply faster and result in too much contention for the restricted resources of the DTMSN, so a proper data gathering scheme needs a trade off between the number of replica messages and network performance. In this paper, we propose a new data gathering protocol called DRADG (for Distance-aware Replica Adaptive Data Gathering protocol), which economizes network resource consumption through making use of a self-adapting algorithm to cut down the number of redundant replicas of messages, and achieves a good network performance by leveraging the delivery probabilities of the mobile sensors as main routing metrics. Simulation results have shown that the proposed DRADG protocol achieves comparable or higher message delivery ratios at the cost of the much lower transmission overhead than several current DTMSN data gathering schemes

    G6PD deficiency in Latin America: systematic review on prevalence and variants

    Full text link
    Plasmodium vivax radical cure requires the use of primaquine (PQ), a drug that induces haemolysis in glucose-6-phosphate dehydrogenase deficient (G6PDd) individuals, which further hampers malaria control efforts. The aim of this work was to study the G6PDd prevalence and variants in Latin America (LA) and the Caribbean region. A systematic search of the published literature was undertaken in August 2013. Bibliographies of manuscripts were also searched and additional references were identified. Low prevalence rates of G6PDd were documented in Argentina, Bolivia, Mexico, Peru and Uruguay, but studies from Curaçao, Ecuador, Jamaica, Saint Lucia, Suriname and Trinidad, as well as some surveys carried out in areas of Brazil, Colombia and Cuba, have shown a high prevalence (> 10%) of G6PDd. The G6PD A-202A mutation was the variant most broadly distributed across LA and was identified in 81.1% of the deficient individuals surveyed. G6PDd is a frequent phenomenon in LA, although certain Amerindian populations may not be affected, suggesting that PQ could be safely used in these specific populations. Population-wide use of PQ as part of malaria elimination strategies in LA cannot be supported unless a rapid, accurate and field-deployable G6PDd diagnostic test is made available

    TPS: A time-based positioning scheme for outdoor wireless sensor networks

    No full text
    Abstract — In this paper, we present a novel time-based positioning scheme (TPS) for efficient location discovery in outdoor sensor networks. TPS relies on TDoA (Time-Difference-of-Arrival) of RF signals measured locally at a sensor to detect range differences from the sensor to three base stations. These range differences are averaged over multiple beacon intervals before they are combined to estimate the sensor location through trilateration. A nice feature of this positioning scheme is that it is purely localized: sensors independently compute their positions. We present a statistical analysis of the performance of TPS in noisy environments. We also identify possible sources of position errors with suggested measures to mitigate them. Our scheme requires no time synchronization in the network and minimal extra hardware in sensor construction. TPS induces no communication overhead for sensors, as they listen to three beacon signals passively during each beacon interval. The computation overhead is low, as the location detection algorithm involves only simple algebraic operations over scalar values. TPS is not adversely affected by increasing network size or density and thus offers scalability. We conduct extensive simulations to test the performance of TPS when TDoA measurement errors are normally distributed or uniformly distributed. The obtained results show that TPS is an effective scheme for outdoor sensor self-positioning. I
    corecore