28 research outputs found

    SIRT7 mediates L1 elements transcriptional repression and their association with the nuclear lamina

    Get PDF
    Long interspersed elements-1 (LINE-1, L1) are retrotransposons that hold the capacity of self-propagation in the genome with potential mutagenic outcomes. How somatic cells restrict L1 activity and how this process becomes dysfunctional during aging and in cancer cells is poorly understood. L1s are enriched at lamin-associated domains, heterochromatic regions of the nuclear periphery. Whether this association is necessary for their repression has been elusive. Here we show that the sirtuin family member SIRT7 participates in the epigenetic transcriptional repression of L1 genome-wide in both mouse and human cells. SIRT7 depletion leads to increased L1 expression and retrotransposition. Mechanistically, we identify a novel interplay between SIRT7 and Lamin A/C in L1 repression. Our results demonstrate that SIRT7-mediated H3K18 deacetylation regulates L1 expression and promotes L1 association with elements of the nuclear lamina. The failure of such activity might contribute to the observed genome instability and compromised viability in SIRT7 knockout mice. Overall, our results reveal a novel function of SIRT7 on chromatin organization by mediating the anchoring of L1 to the nuclear envelope, and a new functional link of the nuclear lamina with transcriptional repression

    Whole-exome sequencing identifies genes associated with Tourette’s disorder in multiplex families

    Get PDF
    Tourette’s Disorder (TD) is a neurodevelopmental disorder (NDD) that affects about 0.7% of the population and is one of the most heritable NDDs. Nevertheless, because of its polygenic nature and genetic heterogeneity, the genetic etiology of TD is not well understood. In this study, we combined the segregation information in 13 TD multiplex families with high-throughput sequencing and genotyping to identify genes associated with TD. Using whole-exome sequencing and genotyping array data, we identified both small and large genetic variants within the individuals. We then combined multiple types of evidence to prioritize candidate genes for TD, including variant segregation pattern, variant function prediction, candidate gene expression, protein–protein interaction network, candidate genes from previous studies, etc. From the 13 families, 71 strong candidate genes were identified, including both known genes for NDDs and novel genes, such as HtrA Serine Peptidase 3 (HTRA3), Cadherin-Related Family Member 1 (CDHR1), and Zinc Finger DHHC-Type Palmitoyltransferase 17 (ZDHHC17). The candidate genes are enriched in several Gene Ontology categories, such as dynein complex and synaptic membrane. Candidate genes and pathways identified in this study provide biological insight into TD etiology and potential targets for future studies.This study was supported by a grant from the National Institute of Mental Health (R01MH092293 to GAH and JAT) and by a grant from the New Jersey Center for Tourette Syndrome (to GAH and JAT). This study was also supported by grants from the National Institute of Mental Health (K08MH099424 to TVF) and the National Institute for Environmental Health Science (R01 ES021462 for YSK and BLL). PM has received grants from the Instituto de Salud Carlos III (PI10/01674, PI13/01461), the Consejería de Economía, Innovación, Ciencia y Empresa de la Junta de Andalucía (CVI-02526, CTS-7685), the Consejería de Salud y Bienestar Social de la Junta de Andalucía (PI-0741/2010, PI-0437-2012, PI-0471-2013), the Sociedad Andaluza de Neurología, the Fundación Alicia Koplowitz, the Fundación Mutua Madrileña, and the Jaques and Gloria Gossweiler Foundation. AM has received grants from the Fundacion Alicia Koplowitz and belongs to the research group of the Comissionat per Universitats i Recerca del Departmanent d’Innovacio (DIUE) 2009SGR1119. AM has received grants from the Deutsche Forschungsgemeinschaft (DFG: MU 1692/3-1, MU 1692/4-1, and FOR 2698). AJW received a Young Investigator Award from Tourette Association of America. IH declares that all research at Great Ormond Street Hospital NHS Foundation Trust and UCL Great Ormond Street Institute of Child Health is made possible by the NIHR Great Ormond Street Hospital Biomedical Research Centre

    SIRT7 and p53 interaction in embryonic development and tumorigenesis

    Get PDF
    p53 is a hallmark tumor suppressor due in part to its role in cell cycle progression, DNA damage repair, and cellular apoptosis; its protein activity interrelates with the Sirtuin family of proteins, major regulators of the cellular response to metabolic, oxidative, and genotoxic stress. In the recent years, mammalian Sirtuin 7 (SIRT7) has emerged as a pivotal regulator of p53, fine-tuning its activity in a context dependent manner. SIRT7 is frequently overexpressed in human cancer, yet its precise role in tumorigenesis and whether it involves p53 regulation is insufficiently understood. Depletion of SIRT7 in mice results in impaired embryo development and premature aging. While p53 activity has been suggested to contribute to tissue specific dysfunction in adult Sirt7−/− mice, whether this also applies during development is currently unknown. By generating SIRT7 and p53 double-knockout mice, here we show that the demise of SIRT7-deficient embryos is not the result of p53 activity. Notably, although SIRT7 is commonly considered an oncogene, SIRT7 haploinsufficiency increases tumorigenesis in p53 knockout mice. Remarkably, in specific human tumors harboring p53 mutation, we identified that SIRT7 low expression correlates with poor patient prognosis. Transcriptomic analysis unveils a previously unrecognized interplay between SIRT7 and p53 in epithelial-to-mesenchymal transition (EMT) and extracellular matrix regulation with major implications for our understanding of embryonic development and tumor progression

    American Gut: an Open Platform for Citizen Science Microbiome Research

    Get PDF
    McDonald D, Hyde E, Debelius JW, et al. American Gut: an Open Platform for Citizen Science Microbiome Research. mSystems. 2018;3(3):e00031-18

    Mammalian HP1 Isoforms Have Specific Roles in Heterochromatin Structure and Organization

    Get PDF
    HP1 is a structural component of heterochromatin. Mammalian HP1 isoforms HP1a, HP1b, and HP1g play different roles in genome stability, but their precise role in heterochromatin structure is unclear. Analysis of Hp1a / , Hp1b / , and Hp1g / MEFs show that HP1 proteins have both redundant and unique functions within pericentric heterochromatin (PCH) and also act globally throughout the genome. HP1a confines H4K20me3 and H3K27me3 to regions within PCH, while its absence results in a global hyper-compaction of chromatin associated with a specific pattern of mitotic defects. In contrast, HP1b is functionally associated with Suv4-20h2 and H4K20me3, and its loss induces global chromatin decompaction and an abnormal enrichment of CTCF in PCH and other genomic regions. Our work provides insight into the roles of HP1 proteins in heterochromatin structure and genome stability

    SIRT7 and p53 interaction in embryonic development and tumorigenesis

    Get PDF
    p53 is a hallmark tumor suppressor due in part to its role in cell cycle progression, DNA damage repair, and cellular apoptosis; its protein activity interrelates with the Sirtuin family of proteins, major regulators of the cellular response to metabolic, oxidative, and genotoxic stress. In the recent years, mammalian Sirtuin 7 (SIRT7) has emerged as a pivotal regulator of p53, fine-tuning its activity in a context dependent manner. SIRT7 is frequently overexpressed in human cancer, yet its precise role in tumorigenesis and whether it involves p53 regulation is insufficiently understood. Depletion of SIRT7 in mice results in impaired embryo development and premature aging. While p53 activity has been suggested to contribute to tissue specific dysfunction in adult Sirt7 −/− mice, whether this also applies during development is currently unknown. By generating SIRT7 and p53 double-knockout mice, here we show that the demise of SIRT7-deficient embryos is not the result of p53 activity. Notably, although SIRT7 is commonly considered an oncogene, SIRT7 haploinsufficiency increases tumorigenesis in p53 knockout mice. Remarkably, in specific human tumors harboring p53 mutation, we identified that SIRT7 low expression correlates with poor patient prognosis. Transcriptomic analysis unveils a previously unrecognized interplay between SIRT7 and p53 in epithelial-to-mesenchymal transition (EMT) and extracellular matrix regulation with major implications for our understanding of embryonic development and tumor progression

    Degree of Tissue Differentiation Dictates Susceptibility to BRAF-Driven Colorectal Cancer

    No full text
    Oncogenic mutations in BRAF are believed to initiate serrated colorectal cancers; however, the mechanisms of BRAF-driven colon cancer are unclear. We find that oncogenic BRAF paradoxically suppresses stem cell renewal and instead promotes differentiation. Correspondingly, tumor formation is inefficient in BRAF-driven mouse models of colon cancer. By reducing levels of differentiation via genetic manipulation of either of two distinct differentiation-promoting factors (Smad4 or Cdx2), stem cell activity is restored in BRAFV600E intestines, and the oncogenic capacity of BRAFV600E is amplified. In human patients, we observe that reduced levels of differentiation in normal tissue is associated with increased susceptibility to serrated colon tumors. Together, these findings help resolve the conditions necessary for BRAF-driven colon cancer initiation. Additionally, our results predict that genetic and/or environmental factors that reduce tissue differentiation will increase susceptibility to serrated colon cancer. These findings offer an opportunity to identify susceptible individuals by assessing their tissue-differentiation status

    Mammalian HP1 isoforms have specific roles in heterochromatin structure and organization

    No full text
    HP1 is a structural component of heterochromatin. Mammalian HP1 isoforms HP1α, HP1β, and HP1γ play different roles in genome stability, but their precise role in heterochromatin structure is unclear. Analysis of Hp1α-/-, Hp1β-/-, and Hp1γ-/- MEFs show that HP1 proteins have both redundant and unique functions within pericentric heterochromatin (PCH) and also act globally throughout the genome. HP1α confines H4K20me3 and H3K27me3 to regions within PCH, while its absence results in a global hyper-compaction of chromatin associated with a specific pattern of mitotic defects. In contrast, HP1β is functionally associated with Suv4-20h2 and H4K20me3, and its loss induces global chromatin decompaction and an abnormal enrichment of CTCF in PCH and other genomic regions. Our work provides insight into the roles of HP1 proteins in heterochromatin structure and genome stability

    Mammalian HP1 isoforms have specific roles in heterochromatin structure and organization

    No full text
    HP1 is a structural component of heterochromatin. Mammalian HP1 isoforms HP1α, HP1β, and HP1γ play different roles in genome stability, but their precise role in heterochromatin structure is unclear. Analysis of Hp1α-/-, Hp1β-/-, and Hp1γ-/- MEFs show that HP1 proteins have both redundant and unique functions within pericentric heterochromatin (PCH) and also act globally throughout the genome. HP1α confines H4K20me3 and H3K27me3 to regions within PCH, while its absence results in a global hyper-compaction of chromatin associated with a specific pattern of mitotic defects. In contrast, HP1β is functionally associated with Suv4-20h2 and H4K20me3, and its loss induces global chromatin decompaction and an abnormal enrichment of CTCF in PCH and other genomic regions. Our work provides insight into the roles of HP1 proteins in heterochromatin structure and genome stability
    corecore