182 research outputs found

    A Computational Approach for Designing Tiger Corridors in India

    Full text link
    Wildlife corridors are components of landscapes, which facilitate the movement of organisms and processes between intact habitat areas, and thus provide connectivity between the habitats within the landscapes. Corridors are thus regions within a given landscape that connect fragmented habitat patches within the landscape. The major concern of designing corridors as a conservation strategy is primarily to counter, and to the extent possible, mitigate the effects of habitat fragmentation and loss on the biodiversity of the landscape, as well as support continuance of land use for essential local and global economic activities in the region of reference. In this paper, we use game theory, graph theory, membership functions and chain code algorithm to model and design a set of wildlife corridors with tiger (Panthera tigris tigris) as the focal species. We identify the parameters which would affect the tiger population in a landscape complex and using the presence of these identified parameters construct a graph using the habitat patches supporting tiger presence in the landscape complex as vertices and the possible paths between them as edges. The passage of tigers through the possible paths have been modelled as an Assurance game, with tigers as an individual player. The game is played recursively as the tiger passes through each grid considered for the model. The iteration causes the tiger to choose the most suitable path signifying the emergence of adaptability. As a formal explanation of the game, we model this interaction of tiger with the parameters as deterministic finite automata, whose transition function is obtained by the game payoff.Comment: 12 pages, 5 figures, 6 tables, NGCT conference 201

    The Standard Model in Strong Fields: Electroweak Radiative Corrections for Highly Charged Ions

    Get PDF
    Electroweak radiative corrections to the matrix elements <ns1/2H^PNCnp1/2><ns_{1/2}|{\hat H}_{PNC}|n'p_{1/2}> are calculated for highly charged hydrogenlike ions. These matrix elements constitute the basis for the description of the most parity nonconserving (PNC) processes in atomic physics. The operator H^PNC{\hat H}_{PNC} represents the parity nonconserving relativistic effective atomic Hamiltonian at the tree level. The deviation of these calculations from the calculations valid for the momentum transfer q2=0q^{2}=0 demonstrates the effect of the strong field, characterized by the momentum transfer q2=me2q^{2}=m_{e}^{2} (mem_{e} is the electron mass). This allows for a test of the Standard Model in the presence of strong fields in experiments with highly charged ions.Comment: 27 LaTex page

    Search for Possible Variation of the Fine Structure Constant

    Full text link
    Determination of the fine structure constant alpha and search for its possible variation are considered. We focus on a role of the fine structure constant in modern physics and discuss precision tests of quantum electrodynamics. Different methods of a search for possible variations of fundamental constants are compared and those related to optical measurements are considered in detail.Comment: An invited talk at HYPER symposium (Paris, 2002

    Trapped electron coupled to superconducting devices

    Full text link
    We propose to couple a trapped single electron to superconducting structures located at a variable distance from the electron. The electron is captured in a cryogenic Penning trap using electric fields and a static magnetic field in the Tesla range. Measurements on the electron will allow investigating the properties of the superconductor such as vortex structure, damping and decoherence. We propose to couple a superconducting microwave resonator to the electron in order to realize a circuit QED-like experiment, as well as to couple superconducting Josephson junctions or superconducting quantum interferometers (SQUIDs) to the electron. The electron may also be coupled to a vortex which is situated in a double well potential, realized by nearby pinning centers in the superconductor, acting as a quantum mechanical two level system that can be controlled by a transport current tilting the double well potential. When the vortex is trapped in the interferometer arms of a SQUID, this would allow its detection both by the SQUID and by the electron.Comment: 13 pages, 5 figure

    Biology and dynamics of potential malaria vectors in Southern France

    Get PDF
    BACKGROUND: Malaria is a former endemic problem in the Camargue, South East France, an area from where very few recent data concerning Anopheles are available. A study was undertaken in 2005 to establish potential malaria vector biology and dynamics and evaluate the risk of malaria re-emergence. METHODS: Mosquitoes were collected in two study areas, from March to October 2005, one week every two weeks, using light traps+CO(2), horse bait traps, human bait catch, and by collecting females in resting sites. RESULTS: Anopheles hyrcanus was the most abundant Anopheles species. Anopheles melanoon was less abundant, and Anopheles atroparvus and Anopheles algeriensis were rare. Anopheles hyrcanus and An. melanoon were present in summer, whereas An. atroparvus was present in autumn and winter. A large number of An. hyrcanus females was collected on humans, whereas almost exclusively animals attracted An. melanoon. Based on an enzyme-linked immunosorbent assay, almost 90% of An. melanoon blood meals analysed had been taken on horse or bovine. Anopheles hyrcanus and An. melanoon parity rates showed huge variations according to the date and the trapping method. CONCLUSION: Anopheles hyrcanus seems to be the only Culicidae likely to play a role in malaria transmission in the Camargue, as it is abundant and anthropophilic

    Thresholds of riparian forest use by terrestrial mammals in a fragmented Amazonian deforestation frontier

    Get PDF
    Species persistence in fragmented landscapes is intimately related to the quality, structure, and context of remaining habitat remnants. Riparian vegetation is legally protected within private landholdings in Brazil, so we quantitatively assessed occupancy patterns of terrestrial mammals in these remnants, examining under which circumstances different species effectively use them. We selected 38 riparian forest patches and five comparable riparian sites within continuous forest, at which we installed four to five camera-traps per site (199 camera-trap stations). Terrestrial mammal assemblages were sampled for 60 days per station during the dry seasons of 2013 and 2014. We modelled species occupancy and detection probabilities within riparian forest remnants, and examined the effects of patch size, habitat quality, and landscape structure on occupancy probabilities. We then scaled-up modelled occupancies to all 1915 riparian patches throughout the study region to identify which remnants retain the greatest potential to work as habitat for terrestrial vertebrates. Of the ten species for which occupancy was modelled, six responded to forest quality (remnant degradation, cattle intrusion, palm aggregations, and understorey density) or structure (remnant width, isolation, length, and area of the patch from which it originates). Patch suitability was lower considering habitat quality than landscape structure, and virtually all riparian remnants were unsuitable to maintain a high occupancy probability for all species that responded to forest patch quality or structure. Beyond safeguarding legal compliance concerning riparian remnant amount, ensuring terrestrial vertebrate persistence in fragmented landscapes will require curbing the drivers of forest degradation within private landholdings

    Low Q^2 Jet Production at HERA and Virtual Photon Structure

    Get PDF
    The transition between photoproduction and deep-inelastic scattering is investigated in jet production at the HERA ep collider, using data collected by the H1 experiment. Measurements of the differential inclusive jet cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the transverse energy and the pseudorapidity of the jets in the virtual photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3 < y < 0.6. The interpretation of the results in terms of the structure of the virtual photon is discussed. The data are best described by QCD calculations which include a partonic structure of the virtual photon that evolves with Q2.Comment: 20 pages, 5 Figure

    Hadron Production in Diffractive Deep-Inelastic Scattering

    Get PDF
    Characteristics of hadron production in diffractive deep-inelastic positron-proton scattering are studied using data collected in 1994 by the H1 experiment at HERA. The following distributions are measured in the centre-of-mass frame of the photon dissociation system: the hadronic energy flow, the Feynman-x (x_F) variable for charged particles, the squared transverse momentum of charged particles (p_T^{*2}), and the mean p_T^{*2} as a function of x_F. These distributions are compared with results in the gamma^* p centre-of-mass frame from inclusive deep-inelastic scattering in the fixed-target experiment EMC, and also with the predictions of several Monte Carlo calculations. The data are consistent with a picture in which the partonic structure of the diffractive exchange is dominated at low Q^2 by hard gluons.Comment: 16 pages, 6 figures, submitted to Phys. Lett.

    Measurement of D* Meson Cross Sections at HERA and Determination of the Gluon Density in the Proton using NLO QCD

    Get PDF
    With the H1 detector at the ep collider HERA, D* meson production cross sections have been measured in deep inelastic scattering with four-momentum transfers Q^2>2 GeV2 and in photoproduction at energies around W(gamma p)~ 88 GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe the differential cross sections within theoretical and experimental uncertainties. Using these calculations, the NLO gluon momentum distribution in the proton, x_g g(x_g), has been extracted in the momentum fraction range 7.5x10^{-4}< x_g <4x10^{-2} at average scales mu^2 =25 to 50 GeV2. The gluon momentum fraction x_g has been obtained from the measured kinematics of the scattered electron and the D* meson in the final state. The results compare well with the gluon distribution obtained from the analysis of scaling violations of the proton structure function F_2.Comment: 27 pages, 9 figures, 2 tables, submitted to Nucl. Phys.

    Systematic Conservation Planning in the Face of Climate Change: Bet-Hedging on the Columbia Plateau

    Get PDF
    Systematic conservation planning efforts typically focus on protecting current patterns of biodiversity. Climate change is poised to shift species distributions, reshuffle communities, and alter ecosystem functioning. In such a dynamic environment, lands selected to protect today's biodiversity may fail to do so in the future. One proposed approach to designing reserve networks that are robust to climate change involves protecting the diversity of abiotic conditions that in part determine species distributions and ecological processes. A set of abiotically diverse areas will likely support a diversity of ecological systems both today and into the future, although those two sets of systems might be dramatically different. Here, we demonstrate a conservation planning approach based on representing unique combinations of abiotic factors. We prioritize sites that represent the diversity of soils, topographies, and current climates of the Columbia Plateau. We then compare these sites to sites prioritized to protect current biodiversity. This comparison highlights places that are important for protecting both today's biodiversity and the diversity of abiotic factors that will likely determine biodiversity patterns in the future. It also highlights places where a reserve network designed solely to protect today's biodiversity would fail to capture the diversity of abiotic conditions and where such a network could be augmented to be more robust to climate-change impacts
    corecore