43 research outputs found

    The use of technical ceramics in early Egyptian glass-making

    Get PDF
    We present a detailed description of the layered structure developing in the walls of Egyptian Late Bronze Age glass-making vessels, and in similar vessels successfully replicated in laboratory experiments. The analyses show that this layered discoloration and change in ceramic composition is due to the interaction of the glass batch with the vessel during firing. The formation of this visually striking and easy to recognise pattern is due to the chloride content of primary glass batches and does not occur in vessels used to re-melt existing glass. Thus, we argue that these discolorations can be used as a reliable and easy field guide to identify glassmaking waste among Late Bronze Age ceramic assemblages, hopefully increasing the currently very small number of identified LBA glassmaking workshops

    Lisht as a New Kingdom glass-making site with its own chemical signature

    Get PDF
    Lisht is one of a few New Kingdom sites with known glass-working debris. Here, we present evidence for the primary production of glass at Lisht, including crucible fragments and semi-finished glass. We also provide 12 new chemical analyses of glass from Lisht, including trace elements. We argue that the glass made at Lisht has a specific chemical signature within the broader range of Late Bronze Age glass compositions from Egypt, further underlining the former existence of primary glass production there and offering the possibility of identifying Lisht-made glass elsewhere in Egypt and beyond

    Ice-core evidence of earliest extensive copper metallurgy in the Andes 2700 years ago

    Get PDF
    The importance of metallurgy for social and economic development is indisputable. Although copper (Cu) was essential for the wealth of pre- and post-colonial societies in the Andes, the onset of extensive Cu metallurgy in South America is still debated. Comprehensive archaeological findings point to first sophisticated Cu metallurgy during the Moche culture ~200–800 AD, whereas peat-bog records from southern South America suggest earliest pollution potentially from Cu smelting as far back as ~2000 BC. Here we present a 6500-years Cu emission history for the Andean Altiplano, based on ice-core records from Illimani glacier in Bolivia, providing the first complete history of large-scale Cu smelting activities in South America. We find earliest anthropogenic Cu pollution during the Early Horizon period ~700–50 BC, and attribute the onset of intensified Cu smelting in South America to the activities of the central Andean Chiripa and Chavin cultures ~2700 years ago. This study provides for the first time substantial evidence for extensive Cu metallurgy already during these early cultures

    Sub-surface Oxygen and Surface Oxide Formation at Ag(111): A Density-functional Theory Investigation

    Full text link
    To help provide insight into the remarkable catalytic behavior of the oxygen/silver system for heterogeneous oxidation reactions, purely sub-surface oxygen, and structures involving both on-surface and sub-surface oxygen, as well as oxide-like structures at the Ag(111) surface have been studied for a wide range of coverages and adsorption sites using density-functional theory. Adsorption on the surface in fcc sites is energetically favorable for low coverages, while for higher coverage a thin surface-oxide structure is energetically favorable. This structure has been proposed to correspond to the experimentally observed (4x4) phase. With increasing O concentrations, thicker oxide-like structures resembling compressed Ag2O(111) surfaces are energetically favored. Due to the relatively low thermal stability of these structures, and the very low sticking probability of O2 at Ag(111), their formation and observation may require the use of atomic oxygen (or ozone, O3) and low temperatures. We also investigate diffusion of O into the sub-surface region at low coverage (0.11 ML), and the effect of surface Ag vacancies in the adsorption of atomic oxygen and ozone-like species. The present studies, together with our earlier investigations of on-surface and surface-substitutional adsorption, provide a comprehensive picture of the behavior and chemical nature of the interaction of oxygen and Ag(111), as well as of the initial stages of oxide formation.Comment: 17 pages including 14 figures, Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Insights into the function of silver as an oxidation catalyst by ab initio, atomistic thermodynamics

    Get PDF
    To help understand the high activity of silver as an oxidation catalyst, e.g., for the oxidation of ethylene to epoxide and the dehydrogenation of methanol to formaldehyde, the interaction and stability of oxygen species at the Ag(111) surface has been studied for a wide range of coverages. Through calculation of the free energy, as obtained from density-functional theory and taking into account the temperature and pressure via the oxygen chemical potential, we obtain the phase diagram of O/Ag(111). Our results reveal that a thin surface-oxide structure is most stable for the temperature and pressure range of ethylene epoxidation and we propose it (and possibly other similar structures) contains the species actuating the catalysis. For higher temperatures, low coverages of chemisorbed oxygen are most stable, which could also play a role in oxidation reactions. For temperatures greater than about 775 K there are no stable oxygen species, except for the possibility of O atoms adsorbed at under-coordinated surface sites Our calculations rule out thicker oxide-like structures, as well as bulk dissolved oxygen and molecular ozone-like species, as playing a role in the oxidation reactions.Comment: 15 pages including 9 figures, Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Critical assessment of the elemental composition of Corning archeological reference glasses by LA-ICP-MS

    Get PDF
    Corning archeological reference glasses A, B, C, and D have been made to simulate different historic technologies of glass production and are used as standards in historic glass investigations. In this work, nanoseconds (193, 266 nm) and femtosecond (800 nm) laser ablation were used to study the elemental composition of Corning glasses using laser ablation inductively coupled plasma mass spectrometry. The determined concentrations of 26 oxides (Li2O, B2O3, Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, V2O5, Cr2O3, MnO, Fe2O3, CoO, NiO, CuO, ZnO, Rb2O, SrO, ZrO2, SnO2, Sb2O5, BaO, PbO, Bi2O3) are compared with values reported in the literature. Results show variable discrepancies between the data, with the largest differences found for Cr2O3 in Corning A; Li2O, B2O3, and Cr2O3 in Corning B; and MnO, Sb2O5, Cr2O3, and Bi2O3 in Corning C. The best agreement between the measured and literature values was found for Corning D. However, even for this reference, glass re-evaluation of the data was necessary and new values for PbO, BaO, and Bi2O3 are proposed

    Late Byzantine Mineral Soda High Alumina Glasses from Asia Minor: A New Primary Glass Production Group

    Get PDF
    The chemical characterisation of archaeological glass allows the discrimination between different glass groups and the identification of raw materials and technological traditions of their production. Several lines of evidence point towards the large-scale production of first millennium CE glass in a limited number of glass making factories from a mixture of Egyptian mineral soda and a locally available silica source. Fundamental changes in the manufacturing processes occurred from the eight/ninth century CE onwards, when Egyptian mineral soda was gradually replaced by soda-rich plant ash in Egypt as well as the Islamic Middle East. In order to elucidate the supply and consumption of glass during this transitional period, 31 glass samples from the assemblage found at Pergamon (Turkey) that date to the fourth to fourteenth centuries CE were analysed by electron microprobe analysis (EPMA) and by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The statistical evaluation of the data revealed that the Byzantine glasses from Pergamon represent at least three different glass production technologies, one of which had not previously been recognised in the glass making traditions of the Mediterranean. While the chemical characteristics of the late antique and early medieval fragments confirm the current model of glass production and distribution at the time, the elemental make-up of the majority of the eighth- to fourteenth-century glasses from Pergamon indicate the existence of a late Byzantine glass type that is characterised by high alumina levels. Judging from the trace element patterns and elevated boron and lithium concentrations, these glasses were produced with a mineral soda different to the Egyptian natron from the Wadi Natrun, suggesting a possible regional Byzantine primary glass production in Asia Minor

    Refining gold with glass – an early Islamic technology at Tadmekka, Mali

    Get PDF
    We describe two crucible fragments from an early Islamic context at the West African site of Tadmekka, in the Republic of Mali. They are made from a very sandy fabric and contain numerous gold particles and mineral grains in a matrix of lightly-coloured glass-based crucible slag. We interpret these as remains of a process separating freshly-panned gold concentrate from residual mineral inclusions, by melting the concentrate together with crushed glass beads. The process has similarities in modern artisanal practice, and shows the versatility of craftspeople in this major urban trading centre famous for its gold wealth

    Report on the analyses of metallurgical samples from Ambelikou Aletri

    No full text
    <p>This example is based on the S&P 500 Index daily close price in April, 2014. Note that the non-trading dates have been removed from the figure.</p
    corecore