1,041 research outputs found
Observation of Conduction Band Satellite of Ni Metal by 3p-3d Resonant Inverse Photoemission Study
Resonant inverse photoemission spectra of Ni metal have been obtained across
the Ni 3 absorption edge. The intensity of Ni 3 band just above Fermi
edge shows asymmetric Fano-like resonance. Satellite structures are found at
about 2.5 and 4.2 eV above Fermi edge, which show resonant enhancement at the
absorption edge. The satellite structures are due to a many-body configuration
interaction and confirms the existence of 3 configuration in the ground
state of Ni metal.Comment: 4 pages, 3 figures, submitted to Physical Review Letter
Computation over galois fields using shiftregisters
This paper presents a technique for readily determining the shiftregister which multiplies by a given element of GF(2m)}, or which raises a given element of GF(2m)} to a given power. A matrix (called a connection matrix) is derived from a primitive polynomial and is corresponded to a particular shiftregister. The nth power of the matrix corresponds to the shiftregister which multiplies by Xn. Examples are presented to illustrate the application of the technique
Density-matrix renormalization group study of pairing when electron-electron and electron-phonon interactions coexist: effect of the electronic band structure
Density-matrix renormalization group is used to study the pairing when both
of electron-electron and electron-phonon interactions are strong in the
Holstein-Hubbard model at half-filling in a region intermediate between the
adiabatic (Migdal's) and antiadiabatic limits. We have found: (i) the pairing
correlation obtained for a one-dimensional system is nearly degenerate with the
CDW correlation in a region where the phonon-induced attraction is comparable
with the electron-electron repulsion, but (ii) pairing becomes dominant when we
destroy the electron-hole symmetry in a trestle lattice. This provides an
instance in which pairing can arise, in a lattice-structure dependent manner,
from coexisting electron-electron and electron-phonon interactions.Comment: 4 pages, 3 figures; to appear in Phys. Rev. Let
Unusual Low-Temperature Phase in VO Nanoparticles
We present a systematic investigation of the crystal and electronic structure
and the magnetic properties above and below the metal-insulator transition of
ball-milled VO nanoparticles and VO microparticles. For this research,
we performed a Rietveld analysis of synchrotron radiation x-ray diffraction
data, O x-ray absorption spectroscopy, V resonant inelastic x-ray
scattering, and magnetic susceptibility measurements. This study reveals an
unusual low-temperature phase that involves the formation of an elongated and
less-tilted V-V pair, a narrowed energy gap, and an induced paramagnetic
contribution from the nanoparticles. We show that the change in the crystal
structure is consistent with the change in the electronic states around the
Fermi level, which leads us to suggest that the Peierls mechanism contributes
to the energy splitting of the state. Furthermore, we find that the
high-temperature rutile structure of the nanoparticles is almost identical to
that of the microparticles.Comment: 7 pages, 8 figures, 2 table
Biomechanical Study Using the Finite Element Method of Internal Fixation in Pauwels Type III Vertical Femoral Neck Fractures
Background: Several factors are known to influence osseous union of femoral neck fractures. Numerous clinical studies have reported different results, hence with different recommendations regarding treatment of Pauwels III fractures: femoral neck fractures with a more vertically oriented fracture line. The current study aimed to analyze biomechanically whether this fracture poses a higher risk of nonunion.
Objectives: To analyze the influence of one designated factor, authors believe that a computerized fracture model, using a finite element Finite Element Method (FEM), may be essential to negate the influence of other factors. The current study aimed to investigate a single factor, i.e. orientation of the fracture line toward a horizontal line, represented by Pauwels classification. It was hypothesized that a model with a vertically oriented fracture line maintaining parity of all other related factors has a higher stress at the fracture site, which would delay fracture healing. This result can be applicable to other types of pinning.
Patients and Methods: The finite element models were constructed from computed tomography data of the femur. Three fracture models, treated with pinning, were constructed based on Pauwels classification: Type I, 30° between the fracture line and a horizontal line; Type II, 50°; and Type III, 70°. All other factors were matched between the models. The Von Mises stress and principal stress distribution were examined along with the fracture line in each model.
Results: The peak Von Mises stresses at the medial femoral neck of the fracture site were 35, 50 and 130 MPa in Pauwels type I, II, and III fractures, respectively. Additionally, the peak Von Mises stresses along with the fracture site at the lateral femoral neck were 140, 16, and 8 MPa in Pauwels type I, II, and III fractures, respectively. The principal stress on the medial femoral neck in Pauwels type III fracture was identified as a traction stress, whereas the principal stress on the lateral femoral neck in Pauwels type I fracture was a compression stress.
Conclusions: The most relevant finding was that hook pinning in Pauwels type III fracture may result in delayed union or nonunion due to significantly increased stress of a traction force at the fracture site that works to displace the fracture. However, in a Pauwels type I fracture, increased compression stress contributes to stabilize it. Surgeons are recommended not to treat Pauwels type III femoral neck fractures by pinning
Decentralised energy futures: The changing emissions reduction landscape
© 2015 The Authors. Published by Elsevier B.V. The world is witnessing an energy revolution as renewables become more competitive and energy security becomes a high priority for an increasing number of countries. This development is changing the point along the supply chain ripe for reducing emissions. Whereas carbon capture and storage (CCS) coupled to coal or gas power production offers the potential to decarbonise the current centralised power systems, this relies on a significant increase in electrification to achieve deep emission reductions beyond the power sector, including industrial emissions and transportation. At the same time there is a trend towards decentralised industrial processes, e.g., driven by cost reductions in decentralised production systems and miniature processing plant. New strategies for reducing emissions from decentralised industrial and energy emission point sources will be increasingly important. This paper evaluates different emission reduction strategies that may be relevant to a decentralised energy and manufacturing future, including increased electrification, energy storage, renewable energy and renewable feedstock. Systemic opportunities or barriers and considerations of policy and decentralised decision-making are examined
Bogoliubov-de Gennes study of trapped spin-imbalanced unitary Fermi gases
It is quite common that several different phases exist simultaneously in a
system of trapped quantum gases of ultra-cold atoms. One such example is the
strongly-interacting Fermi gas with two imbalanced spin species, which has
received a great amount of attention due to the possible presence of exotic
superfluid phases. By employing novel numerical techniques and algorithms, we
self-consistently solve the Bogoliubov de-Gennes equations, which describe
Fermi superfluids in the mean-field framework. From this study, we investigate
the novel phases of spin-imbalanced Fermi gases and examine the validity of the
local density approximation (LDA), which is often invoked in the extraction of
bulk properties from experimental measurements within trapped systems. We show
how the validity of the LDA is affected by the trapping geometry, number of
atoms and spin imbalance.Comment: 15 pages, 5 figures, to be published in New J. Phys. (focus issue on
"Strongly Correlated Quantum Fluids: From Ultracold Quantum Gases to QCD
Plasmas"
Quantum effects for ballistic transport in spintronic devices
Recent fabrication of atomic precision nanodevices for spintronics greatly
boosted their performance and also revealed new interesting features, as
oscillating magnetoresistance with number of atomic layers in a multilayered
structure. This motivates the need to go beyond the usual theoretical approach
of semi-classical continuous layers. Here the simple tight-binding dynamics is
used to describe quantum conduction in a multicomponent system with
spin-polarized electrodes separated by an ultrathin and atomically coherent
non-magnetic spacer (either metallic or insulating). A possibility is indicated
for obtaining a huge resonant enhancement of magnetoresistance in such device
by a special choice of gate voltage on the spacer element.Comment: 9 pages, 9 figure
Dielectric relaxations in poly(glycidyl phenyl ether): Effects of microstructure and cyclic topology
Cyclic and linear, isoregic and aregic, and isotactic and atactic poly(glycidyl phenyl ether) (PGPE) with molecular weights up to Mw = 5.5 kg/mol are synthesized by ring-opening polymerization of glycidyl phenyl ether. Initiation with tetrabutylammonium fluoride leads to isoregic linear polymers with ~95% regular linkages, and initiation with B(C6F5)3 and B(C6F5)3/water leads to aregic cyclic and linear polymers, respectively, with ~50% regular linkages as quantified by 13C NMR. Local, segmental, and chain dynamics in PGPE is investigated by broadband dielectric spectroscopy (10–2–106 Hz). The ß-relaxation for linear PGPE is separated into two contributions arising from the motions of side groups and end groups with activation energies of 35.4 and 23.8 kJ/mol, respectively. The ß-relaxation process for cyclic PGPE shows the same activation energy as that shown by the side-group contribution in linear PGPE, indicating that topology does not play a key role on the side-group local dynamics. Moreover, cyclic PGPE samples show higher calorimetric and dynamic glass transition temperatures as well as lower dynamic fragility compared to linear chains. Unexpectedly from topological considerations, cyclic PGPE shows low frequency dielectric contributions that can be attributed to short wavelength internal ring motions and that are detectable by dielectric relaxation due to the aregic nature of the rings.Peer ReviewedPostprint (author's final draft
- …