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Computation over Galois Fields Using 
Shiffregisters 

H. TANAKA, M. I~ASAHARA, Y. TEZUKA AND Y. I~SAHARA 

Faculty of Engineering, Osaka University, Osaka, Japan 

This paper presents a technique for readily determining the shift- 
register which multiplies by a given element of GF(2"~), or which 
raises a given element of GF(2 "~) to a given power. A matrix (called 
a connection matrix) is derived from a primitive polynomial and 
is corresponded to a particular shiftregister. The nth power of the 
matrix corresponds to the shiftregister which multiplies by X ". 
Examples are presented to illustrate the application of the technique. 

T H E  LIST OF SYMBOLS 

GF(2) Galois Ground Field 
GF(2 m) Galois Extension Field of Degree m 
a A Root  of Primitive Polynomial 
F Matrix Defined by  any Primitive Polynomial 
® modulus 2 Addition between Matrices 
E Unit  IYIatrix 

I. INTRODUCTION 

This paper examines the problem of computation over the Galois 
extension field of degree m and characteristic 2, GF(2m). Given a primi- 
t ive polynomial of degree m over GF(2), a matrix F is defined which 
corresponds the polynomial with a shiftregister. Since the n th  power of 
the matrix F corresponds to a shiftregister which multiplies its contents 
by  X ~ over GF(2m), the shiftregisters appropriate for multiplying and 
taking powers are readily determined. An examp!e of an area in which 
the technique can be applied is the problem of solving simultaneous 
equations with several unknowns, and solving equations of higher de- 
gree with one unknown using shiftregisters. 

II. THE GALOIS EXTENSION FIELD, GF(2 m) 

The algebraic system under consideration in this paper is the extension 
field of degree m over the ground field of order 2. We denote the ele- 
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TABLE I 
OP~aATIO~ ON GF(2) 

Addition 

0 1 

0 1 
1 0 

Multiplication 

• 0 1 

0 0 0 
1 0 1 

TABLE I I  

ELEMENTS OF GF(2 ~) (a 4 -~ a J- 1 = 0) 

0 = 0  
OL 0 ~ 1 

OL 1 ~ O~ 

O~ 2 ~ O~ 2 

a ~ = l + a  

~7 = 1 + a + a ~ 
a s = 1 + a~ 

a I° = 1 + a + a 2 

~1~ = l + a + a ~ + a  ~ 

a 13 = 1 + a 2 + a s 

(~14 = 1 + a 3 

a 15 = 1 = a ° 

(0000)~GF(2)_ 
( 1 0 0 0 ) J  
( 0 1 0 0 )  
( 0 0 1 0 )  
( 0 0 0  l) 
( 1 1 0 0 )  
(0 i 10) 
( 0 0 1  l) 
( 1 1 0 1 )  
( 1 0 1 0 )  
( 0 1 0 1 )  
(i 1 1 0 )  
(0111) 
(1 1 1 l) 
(1011) 
(1 o o  1) 

° . , .  

GF(24) 

ments  of the  ground field b y  0 and 1, and define the  operat ions of addi-  
t ion and mult ipl icat ion as shown in Table  I .  The  ground field is deno ted  
b y  GF(2).  Le t  f ( X )  be a pr imit ive polynomial  of degree m over  GF(2),  
and  let a be a root  of f (X ) .  T he  extension field is cons t ruc ted  b y  adding 
the  element  a to GF(2).  T he  order, or n u m b e r  of elements, of the  ex- 
tension field is 2 ~, and we hence denote  the  field b y  GF(2'~). 

For  example, consider the  following polynomial  of degree 4 over  GF(2) 

f ( X )  = l + X + X 4. (1) 

A primit ive root,  a, of f ( X )  = O, satisfies the  equat ion 

l + a + a  4 = 0 .  (2) 

All the elements of GF(2 4) are listed in Table II. Any element whose 
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power is larger than 3 is reduced to the polynomial of degree less than or 
equal to 3 by  using the relation (2). This extension field will be used 
several times as an example in the following discussions. 

I I I .  T H E  S H I F T R E G I S T E R  C O N N E C T I O N  M A T R I X  C O R R E S P O N D I N G  
TO A P R I M I T I V E  P O L Y N O M I A L  

I I I - l .  DEFINITmN Or THE CON~CTION MATmX 

Consider a primitive polynomial of degree m over GF(2), 

f (X)  = ao + alX + a2X 2 + . . .  + a~.-iX ~-~ + X m. (3) 

The coefficients a~(0 = i = m -- 1), being elements of GF(2"~), are O's 
or l 's.  Given the coefficients a~ of f (X) ,  we define the matrix F as follows; 

F = 

-0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 

0 

0 0 0 0 1 
do al am-1 

(4) 

Thus the matrix F is a matrix of rank m whose dements  are zeros or 
ones. We shall now examine several properties of the matrix F. Let  us 
denote the polynomial of the matrix F by  h(k), i.e., 

h(h) = l hE - F I (5) 

where E denotes the unit  (identity) matrix. We may now prove ~he 
following 

LEM~-A 1. 

f(h) = h(h). (6) 

Proof. We define a matrix as follows; 

I X 1 0 
X 2 X 1 

A = X a X 2 X 1 • (7) 
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Note that [A[ = 1. We multiply (hE - F) by A, obtaining the follow- 
ing result. 

h --1 0 0 0 
0 h - 1  0 0 
0 0 h - 1  • 0 

0 0 0 
--ao --al 

1 0 0 
h 1 0 

h 2 h 1 0 

hm--1 

-0 1 0 0 
0 0 1 0 

0 

_A 

h --1 
(h - -  a~_l)  

° 1 0 

0 
f~ f~ 

where f i ,  i > 1, denotes a polynomial in h, and 

(8)  

A ( ~ )  = - - a o  - -  a l ~  . . . . .  a ~ _ l ~  m-1 ,-.{- X ~ 

=/(x) 

over GF(2). Using (8), we obtain 

h(h) = I h ~  - F J = I h ~  - F J I A J = I ( h~  --  F )A  I = /~ (X)  = / ( h )  

Q.E.D. 

We define the addition of two matrices, F1 and F2, in the usual sense, 
i.e., to mean addition modulus 2 between corresponding elements of F1 
and F 5. 

LEMMA 2.  

f(F) = 0. (9) 
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Proof. Using Lemma 1, 

f (F)  = h(F) = I F E  - F [  = I F  - F ]  = 0 Q.E.D. 

Lemrr~ 2 thus shows tha t  the matrix F defined by f ( X )  is a root of f ( X ) .  
Let  us now consider polynomials in F over GF(2). Since f (X)  is primi- 

tive, and f (a)  = O and f (F)  = 0, we have 
LEMMA 3. The algebra 12(F) of residue classes of polynomials modulo 

{f(F)} is isomorphic to GF(2~). 
Since every element of GF(2 ~) may  be expressed as a linear combina- 

tion of a °, a 1, a ~, - . .  a "~-1, and since ~(F) is isomorphic to GF(2~), we 
have the following lemma. 

LEMMA 4. F" can be expressed as a combination of F ° = E,  F 1, F 2, 
F~, . . .  , F ~-1. 

Suppose that  F n is expressed as 

F ~ -- foE + f~F + f2F 2 + . . .  + f,~_iF "-1, (10) 

where fi (0 _-< i =< m - 1) are elements of GF(2). Then fi can be calcu- 
lated as follows. Let  us divide X ~ by  f ( X ) ,  designating the quotient by  
Q(X)  and the remainder by  R(X).  By  the Euclidean division algorithm, 
we may write 

X "  = f ( X ) Q ( X )  + R ( X )  (11) 

where 

R ( X )  = fo + f~X + f2X ~ + . . .  + fro_iX "-~. (12) 

Substituting F for X and the symbol (~ for + ,  we have 

F n = f (F)Q(F)  ® R(F).  

Since f (F)  = 0 by  Lemma 2, 

F ~ = R(F)  = foE • f~F @ f2F ~ @ . . .  @ f~_~F .-1. (13) 

Hence, f~ (0 < i < m -- 1) are determined as the coefficients of R ( X ) .  

I I I - 2 .  CORRESPOI~,TDE1VCE OF THE ~/~ATRIX F TO A SHIFTREGISTER 

Since the elements of the matrix F are zeros and ones, the matrix F 
is in one-to-one correspondence with a shiftregister. The  element 1 in 
the i th  row and j t h  column of the matrix F indicates tha t  the output  
terminal of the i th  flip-flop (storage device) and the input terminal 
number of the j t h  flip-flop are connected. The element 0 indicates non- 
connection. 
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I_1 

f 
flip_flop @ mod2 adder 

FIG. 1 Shiftregister corresponding to matrix F of (14) 

For example, the element one is located in the first row and the sec- 
ond column of F, then the first flip-flop and the second are connected. 
The matrix F is called the connection matrix of its corresponding shift- 
register. We illustrate the above with the following example. The matrix 
corresponding to the polynomial of (1) is 

o o i ]  
F = | O  0 0 " (14) 

1 1 0 

The shiftregister determined by this matrix is shown in Figure 1. 

IV. RELATIONSHIP OF POWERS OF THE CONNECTION MATRIX TO 
MULTIPLICATION SHIFTREGISTEKS 

Multiplication circuits between elements in GF(2 m) are of special 
interest from the viewpoint of coding theory. This section considers 
multiplication over GF(2 m) using shiftregisters. 

I t  is possible to easily determine multiplication circuits by performing 
computations with the matrix F and its powers. 

THEORE~ 1. The connection matrix of the shiftregister that automatically 
multiplies by a ~ is the matrix F ~. Hence i f  ,x i and a~ are any elements of 
GF(2"~), then multiplying a ~ by a j, for example, 

Oti • O J  ~ O~ i + j  

is carried out by shifting once the shiftregister which has initial state (con- 
tents) a i and connection matrix F j, where 

FJ = fo @ flF @ AF ~ ¢ . . .  ¢ f,,-iSm-L (15) 

This multiplication circuit is shown in Figure 8. 
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flip-flop mod2 adder 

FIG. 2 Shiftreglster corresponding to F 5 

i 
a C 

(initial state) [ 

b C 

( input ) 
F 

c 

( output ) 

5 ~ loek 

81 

vector transmission line 

FIG. 3 Multiplication circuit 

As an example, we consider the matrix F of (14) and show how to 
mukiply ~3 by  ~5. From (13) and Table II,  

F 5 . . ~ F . F  ~ = F ( E G F )  = F @ F  ~. 

Since 

IOolO !1 ol 
k o o o L~ ~ o o], 

1 0 t 1 0 
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~=(o 

b o  
~5= (o!io) 

(oool) ~(i  d 
OlO)=a 8 

I _h 
~ 1 1 0  
. 0 1 1  
1 1 0 Z  

. I 0 1 0  

FIG. 4 Computa t ion  Of a 3 X a 5 

we have 

iolool i o1 [01111 F 5 0 1 0 0 0 0 1 
- t o  o o o o j = l  i o • 

1 1 0 0 1 1 0 1 0 1 

This is the connection matrix corresponding to a 5. The  shiftregister hav- 
ing this connection matrix is shown in Figure 2. The initial state of the 
shiftregister is a 3 = (0001). The  result a 3. a ~ is computed by  shifting 
this shiftregister once. After one bit time, the state becomes 

8 a 3.a 5--  (1010) = a .  

For simplicity the shiftregister corresponding to F" will be pictured 
as in Figure 3. Figure 4 then corresponds to the preceding example. 

V. POWER COMPUTATION 

Shiftregisters for computing powers of elements can be determined by  
applying the following theorem. 

T H ~ o ~  2. To raise any element, a i of GF(2 '~) to the power n, shift 
once the shiftregister whose state corresponds to the element ~ ,  and whose 
connection matr ix  is given by 

(F"-I) ~ = foE @ f~F "-~ @ . . .  @ f,~_,(F"-~) '~-~, (16) 

where the f l (0 <= i <= m -- 1) are the coe~cients of the element a ~ in  GF(2 m) 
expressed by a polynomial.  

Proof. Set n -- i and substitute F "-~ for F in Theorem 1. The result 
of this computation is 

~(~,-i)~ = a , ~ =  (a~),. Q.E.D. 
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a 

(iuput ) __ % T ~ M  ~ ( output ) 

° clock 

- (  
FIG. 5~Fower computation circuit 

~4= (i k 

(Ii00) 

(0 i 0 I) = ~9 

I 0 11 I 0 0 o i0 1 1 o j clock 

FIG. 6 C o m p u t a t i o n  of a 4 to power  6 

This circuit is shown in Figure 5. Hence any element in GF(2 ~) may  be 
raised to the power n in one bit  time, using above computat ional  method. 
Note,  however, tha t  the configuration of the shiftregister depends both 
on the element and on the power. 

For example, the procedure of computat ion of a 4 to power 6 proceeds 
as follows. We have 

a 4 = l + a  = (1100). 

F rom Theorem 2, the connection matrix is 

(F6-1)~ = (FS) 4 = F20 = F 5, 

and the state is a s = (1100). Shifting once, we obtain 

( . 9 0 = ~ =  9 _ _ ~ + ~ =  (0101). 

Thus (1100) 6 = (0101), as m a y  be verified f rom Table I I .  The circuit is 
illustrated in Figure 6. 
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VI. CONCLUSION 

We have developed a procedure for easily determining shiftregisters 
capable of performing multiplication or taking powers over GF(2~). 
The  shiftregisters are especially useful for performing computations in- 
volved in solving either simultaneous linear equations such as Newton's  
identities, which arise in decoding Bose-Chaudhuri-Hocquenghem codes, 
or equations of higher degree in a single unknown. 
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