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Computation over Galois Fields Using
Shiftregisters

H. Tanaxa, M. Kasanara, Y. Tezura anp Y. Kasamaras

Faculty of Engineering, Osaka University, Osaka, Japan

This paper presents a technique for readily determining the shift-
register which multiplies by a given element of GF(2™), or which
raises a given element of GF(2") to a given power. A matrix (called
a connection matrix) iz derived from a primitive polynomial and
i corresponded to a particular shiftregister. The nth power of the
matrix corresponds to the shiftregister which multiplies by X7.
Examples are presented to illustrate the application of the technique.

THE LIST OF SYMBOLS

GF(2) Galois Ground Field

GF(2™) Galois Extension Field of Degree m

A Root of Primitive Polynomial

Matrix Defined by any Primitive Polynomial
modulus 2 Addition between Matrices

Unit Matrix

e =R

I. INTRODUCTION

This paper examines the problem of computation over the Galois
extension field of degree m and characteristic 2, GF(2™). Given a primi-
tive polynomial of degree m over GF(2), a matrix F is defined which
corresponds the polynomial with a shiftregister. Since the nth power of
the matrix F corresponds to a shiftregister which multiplies its contents
by X" over GF(2"), the shiftregisters appropriate for multiplying and
taking powers are readily determined. An example of an area in which
the technique can be applied is the problem of solving simultaneous
equations with several unknowns, and solving equations of higher de-
gree with one unknown using shiftregisters.

II. THE GALOIS EXTENSION FIELD, GF(2™)

The algebraic system under consideration in this paper is the extension
field of degree m over the ground field of order 2. We denote the ele-
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TABLE I
OPERATION ON GF(2)
Addition Multiplication
0 0 1 0 0 0
1 1 0 1 0 1
TABLE II
EreMENTS OF GF (2% (ot + 2+ 1 = 0)

0 =0 0000)
@ =1 100 0)}GF @
al = [ 0100
a? = ot 0010
ot = a* (0001
at =14 a 1100
ad = a+ of 0110
ab = a2t o (0011)
" =1+ a +at (1101) GF (2
ot =1 + a? 1010
o = a +a (0101)
al® =1+ a+ a? 1110
oll = a+oat+a® (0111)
a2 =14+ata?+at (1111)
al® =1 +a2+ad 1011)
alt =1 + e 1001)
olf =1 = af

ments of the ground field by 0 and 1, and define the operations of addi-
tion and multiplication as shown in Table I. The ground field is denoted
by GF(2). Let f(X) be a primitive polynomial of degree m over GF(2),
and let a be a root of f(X). The extension field is constructed by adding
the element « to GF(2). The order, or number of elements, of the ex-
tension field is 2", and we hence denote the field by GF(2™).

For example, consider the following polynomial of degree 4 over GF (2)

fX)=1+X+X" 1)
A prlrmtlve root, e, of f(X) = 0, satisfies the equation
14+a+4ao =0 2

All the elements of GF(2') are listed in Table II. Any element whose
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power is larger than 3 is reduced to the polynomial of degree less than or
equal to 3 by using the relation (2). This extension field will be used
several times as an example in the following discussions.

III. THE SHIFTREGISTER CONNECTION MATRIX CORRESPONDING
TO A PRIMITIVE POLYNOMIAL

I11-1. DernrTion oF tHE CONNECTION MATRIX

Consider a primitive polynomial of degree m over GF(2),
X)) =a+ aX + X+ - + auaX" + X" (3)

The coefficients a;(0 < 4 £ m — 1), being elements of GF(2"), are 0’s

or 1’s. Given the coefficients a; of f(X), we define the matrix F as follows;

0 1 0 O 0 ]
0 0 1 0 0
0 0 0 1 0
F o= (4)
. 3 . - 0
0 0 O 0o 1
G0 1 Gy _|

Thus the matrix F is a matrix of rank m whose elements are zeros or
ones. We shall now examine several properties of the matrix F. Let us
denote the polynomial of the matrix F by AQ\), i.e.,

h(A) = |AE — F | (5)
where F denotes the unit (identity) matrix. We may now prove the
following

Lemma 1.
) = hQ). (6)
Proof. We define a matrix as follows;
1 0 o0 0]
A 1 0 0
AN 1 .
A= A* A% (7
. ¢
\—)\m—-l 1—
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Note that | A | = 1. We multiply (\E — F) by A, obtaining the follow-

ing result.
A2 -1 0 o0 0
0 A —1 0 0
0 0 L | 0
0 0 0 A -1
| —G —m N — @n)
1 0 0 0]
A1 0 - 0
oA 10 0
A 1
[0 1 0 0 0]
0 0 1 0O 0
. .0
o - - 0 1
_ﬁ f2 f3 fm_J
where f;, 2 > 1, denotes a polynomial in A, and
f) = —ag — aA — -+ —am ™t 4\

= f(\)
over GF(2). Using (8), we obtain

(8)

) = |NE ~F|=|XE~F||A|=|QE —P)A| =£}) =)

Q.E.D.

We define the addition of two matrices, F; and F, , in the usual sense,
i.e., to mean addition modulus 2 between corresponding elements of F;

and F 9.
LemMma 2.

f(F) = 0.

©)
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Proof. Using Lemma 1,
fFY=hF)=|FE~F|=|F—F|=0 Q.E.D.

Lemma 2 thus shows that the matrix F defined by f(X) is a root of f(X).

Let us now consider polynomials in F over GF(2). Since f(X) is primi-
tive, and f(a) = O and f(F) = 0, we have

Lenmma 3. The algebra Q(F) of residue classes of polynomials modulo
{f(F)} is isomorphic to GF(2™).

Sinece every element of GF(2") may be expressed as a linear combina-
tion of a9, o, o, -+ ™", and since Q(F) is isomorphie to GF(2™), we
have the following lemma.

Levmma 4. F* can be expressed as a combination of F* = K, F', F?,
Fs, ... ,Fm—l.

Suppose that F» is expressed as

Fr= foll + fiF + foF? + - A fuaF™, (10)

where f; (0 £ 7 = m — 1) are elements of GF(2). Then f; can be calcu-
Iated as follows. Let us divide X* by f(X), designating the quotient by
Q(X) and the remainder by E(X). By the Euclidean division algorithm,
we may write

X = f(X)QX) + R(X) (11)
where
RX) =fi + AiX +£X*+ -+ + fuaX™ N (12)
Substituting F for X and the symbol @ for -, we have
Fr = f(F)Q(F) ® R(F).
Since f(F) = 0 by Lemma 2,
"=RF)=fE®H @LF?® +++ @ fnal "L (13)

Hence, f; (0 £ 7 = m — 1) are determined as the coefficients of R(X).

I11-2. CORRESPONDENCE OF THE MATRIX F TO A SHIFTREGISTER

Since the elements of the matrix F are zeros and ones, the matrix ¥
is in one-to-one correspondence with a shiftregister. The element 1 in
the 7th row and jth column of the matrix F indicates that the output
terminal of the #th flip-flop (storage device) and the input terminal
number of the jth flip-flop are connected. The element O indicates non-
connection.
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flip.flop @ mod2 adder

F1e. 1 Shiftregister corresponding to matrix F of (14)

For example, the element one is located in the first row and the sec-
ond column of F, then the first flip-flop and the second are connected.
The matrix F is called the connection matrix of its corresponding shift-
register. We illustrate the above with the following example. The matrix
corresponding to the polynomial of (1) is

"0100
po|0 0 10

Lo 0 0 1 (14)

1 1 0 0
The shiftregister determined by this matrix is shown in Figure 1.

IV. RELATIONSHIP OF POWERS OF THE CONNECTION MATRIX TO
MULTIPLICATION SHIFTREGISTERS

Multiplication ecircuits between elements in GF(2™) are of special
interest from the viewpoint of coding theory. This section considers
multiplication over GF (2™) using shiftregisters.

It is possible to easily determine multiplication circuits by performing
computations with the matrix ¥ and its powers.

TuroreM 1. The connection matriz of the shiftregister that automatically
multiplies by o is the mairiz F». Hence if of and o are any elements of
GF(2™), then multiplying o by o, for example,

o o = g
is carried out by shifting once the shiftregister which has initial state (con-
tents) o and connection matriz F’, where

Fi=fi®fF @ fF?® -+ @ fuak™™ (15)

This multiplication circust is shown in Figure 3.
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flip-flop % mod2 adder

Fic. 2 Shiftregister corresponding to F5

& (0 a‘ S et
(initial state) (output)
. clock
] ‘/[
» o——— F
{input)

S— vector transmission line

Fi1c. 3 Multiplication eireuit

As an example, we consider the matrix F of (14) and show how to
multiply of by o From (13) and Table 1T,

FP=F - F*=FE®F)=F®F~

Since

"0
and F* = 0

>

I

T

oo
- €D =
SO =0
OO
[ i s i )
bt O O =
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2 Qs (oo001) )
@ =(0001) \ (1010)=ad8
clock
‘o110
0011
b 17101 »/I
W=(0110) 1010
Fie. 4 Computation of a® X of
we have
0 1 6 O 0 0 1 0 0 1 1 0
F5=0010@0001—0011
0 0 0 1 110 0} |1 1 0 1
1 1 0 0 0 1 1 0 1 0 1 0

This is the conneetion matrix corresponding to ab. The shiftregister hav-
ing this connection matrix is shown in Figure 2. The initial state of the
shiftregister is o® = (0001). The result of. of is computed by shifting
this shiftregister once. After one bit time, the state becomes

ab. b = (1010) = o°.

For simplicity the shiftregister corresponding to F» will be pictured
as in Figure 3. Figure 4 then corresponds to the preceding example.

V. POWER COMPUTATION

Shiftregisters for computing powers of elements can be determined by
applying the following theorem.

TusoreM 2. To raise any element, o of GF(2") to the power n, shift
once the shiftreqister whose state corresponds fo the element of, and whose
connection matrix is given by

(Fri =i @ fiF " @ -+ @ fua(Fr ), (16)
where the f; (0 £ 1 £ m — 1) are the coefficients of the element o in GF (2™)

expressed by a polynomial,
Proof. Set n = ¢ and substitute F= for F in Theorem 1. The result

of this computation is
a¥(ar 1) = ot = (af)™. Q.E.D.
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a G %‘ ;—n—-ﬂ c
(input) W (output)
( > clock
Fig. 5 Power computation circuit
a Cﬁ ( 1100 ) —aﬂ ]
a*= (110 0) w (0101) =a

0110 clock
0011
1100 /‘
1010

Fia. 6 Computation of o to power 6

This eircuit is shown in Figure 5. Hence any element in GF(2") may be
raised to the power n in one bit time, using above computational method.
Note, however, that the configuration of the shiftregister depends both
on the element and on the power.

For example, the procedure of computation of of to power 6 proceeds
as follows. We have

ot =1+ a = (1100).
From Theorem 2, the connection matrix is
(Feiy = (Fo) = F® = F3,
and the state is o* = (1100). Shifting once, we obtain
(0))f = o = o’ = o+ o = (0101).

Thus (1100)¢ = (0101), as may be verified from Table II. The circuit is
illustrated in Figure 6.
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V1. CONCLUSION

We have developed a procedure for easily determining shiftregisters
capable of performing multiplication or taking powers over GF(2m).
The shiftregisters are especially useful for performing computations in-
volved in solving either simultaneous linear equations such as Newton’s
identities, which arise in decoding Bose-Chaudhuri-Hoequenghem codes,
or equations of higher degree in a single unknown.
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