1,590 research outputs found
Cotunneling-mediated transport through excited states in the Coulomb blockade regime
We present finite bias transport measurements on a few-electron quantum dot.
In the Coulomb blockade regime, strong signatures of inelastic cotunneling
occur which can directly be assigned to excited states observed in the
non-blockaded regime. In addition, we observe structures related to sequential
tunneling through the dot, occuring after it has been excited by an inelastic
cotunneling process. We explain our findings using transport calculations
within the real-time Green's function approach, including diagrams up to fourth
order in the tunneling matrix elements.Comment: 4 pages, 3 figure
Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease
Maple syrup urine disease (MSUD) is an inherited disorder of branched-chain amino acid metabolism presenting with lifethreatening cerebral oedema and dysmyelination in affected individuals. Treatment requires life-long dietary restriction and monitoring of branched-chain amino acids to avoid brain injury. Despite careful management, children commonly suffer metabolic decompensation in the context of catabolic stress associated with non-specific illness. The mechanisms underlying this decompensation and brain injury are poorly understood. Using recently developed mouse models of classic and intermediate maple syrup urine disease, we assessed biochemical, behavioural and neuropathological changes that occurred during encephalopathy in these mice. Here, we show that rapid brain leucine accumulation displaces other essential amino acids resulting in neurotransmitter depletion and disruption of normal brain growth and development. A novel approach of administering norleucine to heterozygous mothers of classic maple syrup urine disease pups reduced branched-chain amino acid accumulation in milk as well as blood and brain of these pups to enhance survival. Similarly, norleucine substantially delayed encephalopathy in intermediate maple syrup urine disease mice placed on a high protein diet that mimics the catabolic stress shown to cause encephalopathy in human maple syrup urine disease. Current findings suggest two converging mechanisms of brain injury in maple syrup urine disease including: (i) neurotransmitter deficiencies and growth restriction associated with branchedchain amino acid accumulation and (ii) energy deprivation through Krebs cycle disruption associated with branched-chain ketoacid accumulation. Both classic and intermediate models appear to be useful to study the mechanism of brain injury and potential treatment strategies for maple syrup urine disease. Norleucine should be further tested as a potential treatment to prevent encephalopathy in children with maple syrup urine disease during catabolic stress
Skeletal Muscle Differentiation Evokes Endogenous XIAP to Restrict the Apoptotic Pathway
Myotube apoptosis occurs normally during muscle development and aging but it can lead to destruction of skeletal muscle in neuromuscular diseases. Therefore, understanding how myotube apoptosis is regulated is important for developing novel strategies for treatment of muscle loss. We investigated the regulation of apoptosis in skeletal muscle and report a striking increase in resistance to apoptosis following differentiation. We find mitotic C2C12 cells (myoblast-like cells) are sensitive to cytosolic cytochrome c microinjection. However, differentiated C2C12 cells (myotube-like cells) and primary myotubes are markedly resistant. This resistance is due to endogenous X-linked inhibitor of apoptotic protein (XIAP). Importantly, the selective difference in the ability of XIAP to block myotube but not myoblast apoptosis is not due to a change in XIAP but rather a decrease in Apaf-1 expression. This decrease in Apaf-1 links XIAP to caspase activation and death. Our findings suggest that in order for myotubes to die, they may degrade XIAP, functionally inactivate XIAP or upregulate Apaf-1. Importantly, we identify a role for endogenous Smac in overcoming XIAP to allow myotube death. However, in postmitotic cardiomyocytes, where XIAP also restricts apoptosis, endogenous Smac was not capable of overcoming XIAP to cause death. These results show that as skeletal muscle differentiate, they become resistant to apoptosis because of the ability of XIAP to regulate caspase activation. The increased restriction of apoptosis in myotubes is presumably important to ensure the long term survival of these postmitotic cells as they play a vital role in the physiology of organisms
Substrate-Assisted Catalysis Unifies Two Families of Chitinolytic Enzymes
Hen egg-white lysozyme has long been the paradigm for enzymatic glycosyl hydrolysis with retention of configuration, with a protonated carboxylic acid and a deprotonated carboxylate participating in general acid-base catalysis. In marked contrast, the retaining chitin degrading enzymes from glycosyl hydrolase families 18 and 20 all have a single glutamic acid as the catalytic acid but lack a nucleophile on the enzyme. Both families have a catalytic (ÎČα)8-barrel domain in common. X-ray structures of three different chitinolytic enzymes complexed with substrates or inhibitors identify a retaining mechanism involving a protein acid and the carbonyl oxygen atom of the substrateâs C2 N-acetyl group as the nucleophile. These studies unambiguously demonstrate the distortion of the sugar ring toward a sofa conformation, long postulated as being close to that of the transition state in glycosyl hydrolysis.
ATP synthase deficiency due to TMEM70 mutation leads to ultrastructural mitochondrial degeneration and is amenable to treatment.
TMEM70 is involved in the biogenesis of mitochondrial ATP synthase and mutations in the TMEM70 gene impair oxidative phosphorylation. Herein, we report on pathology and treatment of ATP synthase deficiency in four siblings. A consanguineous family of Roma (Gipsy) ethnic origin gave birth to 6 children of which 4 were affected presenting with dysmorphic features, failure to thrive, cardiomyopathy, metabolic crises, and 3-methylglutaconic aciduria as clinical symptoms. Genetic testing revealed a homozygous mutation (c.317-2A>G) in the TMEM70 gene. While light microscopy was unremarkable, ultrastructural investigation of muscle tissue revealed accumulation of swollen degenerated mitochondria with lipid crystalloid inclusions, cristae aggregation, and exocytosis of mitochondrial material. Biochemical analysis of mitochondrial complexes showed an almost complete ATP synthase deficiency. Despite harbouring the same mutation, the clinical outcome in the four siblings was different. Two children died within 60âh after birth; the other two had recurrent life-threatening metabolic crises but were successfully managed with supplementation of anaplerotic amino acids, lipids, and symptomatic treatment during metabolic crisis. In summary, TMEM70 mutations can cause distinct ultrastructural mitochondrial degeneration and almost complete deficiency of ATP synthase but are still amenable to treatment
Evidence for quark-matter cores in massive neutron stars
The theory governing the strong nuclear force-quantum chromodynamics-predicts that at sufficiently high energy densities, hadronic nuclear matter undergoes a deconfinement transition to a new phase of quarks and gluons(1). Although this has been observed in ultrarelativistic heavy-ion collisions(2,3), it is currently an open question whether quark matter exists inside neutron stars(4). By combining astrophysical observations and theoretical ab initio calculations in a model-independent way, we find that the inferred properties of matter in the cores of neutron stars with mass corresponding to 1.4 solar masses (M-circle dot) are compatible with nuclear model calculations. However, the matter in the interior of maximally massive stable neutron stars exhibits characteristics of the deconfined phase, which we interpret as evidence for the presence of quark-matter cores. For the heaviest reliably observed neutron stars(5,6) with mass M approximate to 2M(circle dot), the presence of quark matter is found to be linked to the behaviour of the speed of sound c(s) in strongly interacting matter. If the conformal bound cs2Peer reviewe
Energiekostenbelastung privater Haushalte â Das EEG als sozialpolitische Zeitbombe?
Seit dem Jahr 2000 haben sich die Strompreise fĂŒr private Haushalte praktisch verdoppelt. Von steigenden Stromkosten sind nicht zuletzt Millionen von armutsgefĂ€hrdeten Haushalten betroffen. Vor diesem Hintergrund untersucht der vorliegende Beitrag exemplarisch fĂŒr einige Haushaltstypen mit geringem Einkommen, wie stark ihre Stromkostenbelastung in den vergangenen Jahren relativ zum Einkommen zugenommen hat und in welchem MaĂe diese Belastung kĂŒnftig weiter steigen könnte. Nach unseren AbschĂ€tzungen auf Basis stilisierter Fakten musste beispielsweise der von uns betrachtete armutsgefĂ€hrdete alleinstehende Rentner im Jahr 2013 etwa gleich viel fĂŒr Strom ausgeben wie zur Deckung seines Energiebedarfs zum Heizen und zur Warmwassererzeugung. Es muss davon ausgegangen werden, dass aufgrund des Ausbaus der erneuerbaren Energien die Stromkostenbelastung auch in den nĂ€chsten Jahren weiter steigen wird. Damit stellt sich immer drĂ€ngender die Frage nach MaĂnahmen zur AbschwĂ€chung der Entwicklung steigender Strompreise und zur sozialen Abfederung ihrer regressiven Wirkungen
Habitat structure: a fundamental concept and framework for urban soil ecology
Habitat structure is defined as the composition and arrangement of physical matter at a location. Although habitat structure is the physical template underlying ecological patterns and processes, the concept is relatively unappreciated and underdeveloped in ecology. However, it provides a fundamental concept for urban ecology because human activities in urban ecosystems are often targeted toward management of habitat structure. In addition, the concept emphasizes the fine-scale, on-the-ground perspective needed in the study of urban soil ecology. To illustrate this, urban soil ecology research is summarized from the perspective of habitat structure effects. Among the key conclusions emerging from the literature review are: (1) habitat structure provides a unifying theme for multivariate research about urban soil ecology; (2) heterogeneous urban habitat structures influence soil ecological variables in different ways; (3) more research is needed to understand relationships among sociological variables, habitat structure patterns and urban soil ecology. To stimulate urban soil ecology research, a conceptual framework is presented to show the direct and indirect relationships among habitat structure and ecological variables. Because habitat structure serves as a physical link between sociocultural and ecological systems, it can be used as a focus for interdisciplinary and applied research (e.g., pest management) about the multiple, interactive effects of urbanization on the ecology of soils
Serial femtosecond zero dose crystallography captures a waterâfree distal heme site in a dyeâdecolourising peroxidase to reveal a catalytic role for an arginine in FeIV=O formation
Obtaining structures of intact redox states of metal centres derived from zero dose Xâray crystallography can advance our mechanistic understanding of metalloenzymes. In dyeâdecolourising heme peroxidases (DyPs), controversy exists regarding the mechanistic role of the distal heme residues, aspartate and arginine, in the heterolysis of peroxide to form the catalytic intermediate compound I (Fe IV =O and a porphyrin cation radical). Using serial femtosecond Xâray (SFX) crystallography, we have determined the pristine structures of the Fe III and Fe IV =O redox states of a Bâtype DyP. These structures reveal a waterâfree distal heme site, which together with the presence of an asparagine, infer the use of the distal arginine as a catalytic base. A combination of mutagenesis and kinetic studies corroborate such a role. Our SFX approach thus provides unique insight into how the distal heme site of DyPs can be tuned to select aspartate or arginine for the rate enhancement of peroxide heterolysis
- âŠ