86 research outputs found

    Constraints on lithospheric mantle and crustal anisotropy in the NoMelt area from an analysis of long-period seafloor magnetotelluric data

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth, Planets and Space 69 (2017): 138, doi:10.1186/s40623-017-0724-1.Despite strong anisotropy seen in analysis of seismic data from the NoMelt experiment in 70 Ma Pacific seafloor, a previous analysis of coincident magnetotelluric (MT) data showed no evidence for anisotropy in the electrical conductivity structure of either lithosphere or asthenosphere. We revisit the MT data and use 1D anisotropic models of the lithosphere to demonstrate the limits of acceptable anisotropy within the data. We construct 1D models by varying the thickness and the degree of anisotropy within the lithosphere and conduct a series of tests to investigate what types of electrical anisotropy are compatible with the data. We find that electrical anisotropy is possible in a sheared and/or hydrous mantle within the lower lithosphere (60–90 km depth). The data are not compatible with pervasive electrical anisotropy in the crust. Causes of anisotropy within the highly resistive upper and mid-lithosphere, as seen seismically, are not expected to cause measurable impacts on MT response.RLE was supported by NSF Grant OCE-0928663

    Upper mantle electrical resistivity structure beneath the Southwest Indian Ridge 37ºE

    Get PDF
    第3回極域科学シンポジウム/第32回極域地学シンポジウム 11月30日(金) 国立極地研究所 3階ラウン

    Robust magnetotelluric inversion

    Get PDF
    Author Posting. © The Author(s), 2014. This article is posted here by permission of The Royal Astronomical Society for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 196 (2014): 1365-1374, doi:10.1093/gji/ggt484.A robust magnetotelluric (MT) inversion algorithm has been developed on the basis of quantile-quantile (q-q) plotting with confidence band and statistical modelling of inversion residuals for the MT response function (apparent resistivity and phase). Once outliers in the inversion residuals are detected in the q-q plot with the confidence band and the statistical modelling with the Akaike information criterion, they are excluded from the inversion data set and a subsequent inversion is implemented with the culled data set. The exclusion of outliers and the subsequent inversion is repeated until the q-q plot is substantially linear within the confidence band, outliers predicted by the statistical modelling are unchanged from the prior inversion, and the misfit statistic is unchanged at a target level. The robust inversion algorithm was applied to synthetic data generated from a simple 2-D model and observational data from a 2-D transect in southern Africa. Outliers in the synthetic data, which come from extreme values added to the synthetic responses, produced spurious features in inversion models, but were detected by the robust algorithm and excluded to retrieve the true model. An application of the robust inversion algorithm to the field data demonstrates that the method is useful for data clean-up of outliers, which could include model as well as data inconsistency (for example, inability to fit a 2-D model to a 3-D data set), during inversion and for objectively obtaining a robust and optimal model. The present statistical method is available irrespective of the dimensionality of target structures (hence 2-D and 3-D structures) and of isotropy or anisotropy, and can operate as an external process to any inversion algorithm without modifications to the inversion program.TM was supported by the scientific program of TAIGA (trans-crustal advection and in-situ reaction of global sub-seafloor aquifer) sponsored by the MEXT of Japan, and is supported by the NIPR project KP-7. ADC is supported by US National Science Foundation (NSF) grant EAR1015185

    Modeling of a dispersive tsunami caused by a submarine landslide based on detailed bathymetry of the continental slope in the Nankai trough, southwest Japan

    Get PDF
    Tsunamis caused by submarine landslides are not accompanied by seismic waves and thus may appear at the coast without warning. In this study, detailed bathymetric surveys with a multi-narrow beam echo sounder were used to map submarine landslides on the continental shelf near Cape Muroto, in the Nankai trough off southwestern Japan. One of the surveyed submarine landslides was selected to supply dimensions for the simulation of a submarine mass movement by a two-layer flow model in which the upper and lower layers correspond to seawater and turbidity currents, respectively. The time series of seafloor deformation during this simulated landslide was used as the boundary condition to drive a tsunami simulation. The results showed strong directivity effects during tsunami generation in which pushing-dominant (positive) tsunami waves propagated seaward, in the direction of the submarine landslide, and pulling-dominant (negative) tsunami waves propagated landward. Both types of waves were strongly modified by frequency dispersion. For pulling-dominant waves, a tsunami simulation that included dispersion (Boussinesq) terms predicted greater maximum tsunami heights than a non-dispersive tsunami simulation. To avoid underestimation of tsunami heights, we recommend including dispersion terms when modeling tsunamis caused by submarine landslides for disaster planning purposes

    Three minute, but not one minute, ischemia and nicorandil have a preconditioning effect in patients with coronary artery disease

    Get PDF
    AbstractOBJECTIVESThis study focused on 1) the determination of the optimal preconditioning (PC) duration, and 2) the protective effect of nicorandil (NC), a hybrid nitrate with a Katpchannel opening effect, during a percutaneous transluminal coronary angioplasty (PTCA) model in humans.BACKGROUNDThe ischemic PC effect is induced in 180 s ischemia, but not in 120 s ischemia in rabbit hearts. However, the duration of ischemia that induces PC effect and the role of the Katpchannel in the PC effect in humans are still unclear.METHODSForty-six patients with stable angina were randomly allocated to four groups: the duration of the first inflation as PC ischemia was 60 s in the PC60 group (n = 12), and 180 s in the PC180 group (n = 12). In the other groups, NC (80 μg/kg) was intravenously given for 1 min in the NC group (n = 12), and isosorbide dinitrate (ISDN) (40 μg/kg) was given in the ISDN group (n = 10). Five minutes after first inflation or drug administration, a second inflation was conducted for 120 s in each group. In the ECG, the lead with the largest shift in ST segment (deltaST max), and the sum of elevated ST levels in all leads (sigmaST) were determined.RESULTSIn the PC60 group, no significant difference was observed in either deltaST max or sigmaST between the first and second inflation. However, the second inflation in the PC180 group showed significantly lower levels of deltaST max and sigmaST compared with those of the first inflation. In the NC group, both deltaST max and sigmaST measured at 30 s and 60 s after balloon inflation were significantly lower than those of the first inflation in the PC60 and PC180 control groups. In the ISDN group, no significant difference was observed in deltaST max or sigmaST.CONCLUSIONIn human PTCA models, a PC effect is observed in 180 s ischemia, but not in 60 s ischemia. A pharmacological PC effect is induced by NC, a Katpchannel opener with a nitrate-like effect but not ISDN. This suggests that the opening of Katpchannels plays an important role in the protecting effect of NC

    Electromagnetic constraints on a melt region beneath the central Mariana back-arc spreading ridge

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 13 (2012): Q10017, doi:10.1029/2012GC004326.An electrical resistivity profile across the central Mariana subduction system shows high resistivity in the upper mantle beneath the back-arc spreading ridge where melt might be expected to exist. Although seismic data are equivocal on the extent of a possible melt region, the question arises as to why a 2-D magnetotelluric (MT) survey apparently failed to image any melt. We have run forward models and inversions that test possible 3-D melt geometries that are consistent with the MT data and results of other studies from the region, and that we use to place upper bounds on the possible extent of 3-D melt region beneath the spreading center. Our study suggests that the largest melt region that was not directly imaged by the 2-D MT data, but that is compatible with the observations as well as the likely effects of melt focusing, has a 3-D shape on a ridge-segment scale focused toward the spreading center and a resistivity of 100 Ω-m that corresponds to ∼0.1–∼1% interconnected silicate melt embedded in a background resistivity of ∼500 Ω-m. In contrast to the superfast spreading southern East Pacific Rise, the 3-D melt region suggests that buoyant mantle upwelling on a ridge-segment scale is the dominant process beneath the slow-spreading central Mariana back-arc. A final test considers whether the inability to image a 3-D melt region was a result of the 2-D survey geometry. The result reveals that the 2-D transect completed is useful to elucidate a broad range of 3-D melt bodies.TM and NS are supported by the scientific program of “TAIGA” (Trans-crustal Advection and In situ reaction of Global sub-seafloor Aquifer)” sponsored by the MEXT of Japan, and are also supported by the JSPS for Grant-In-Aid for Scientific Research (21244070). Participation in the Marianas experiment by RLE and ADC was supported by NSF grant OCE0405641.2013-04-2

    Upper mantle electrical resistivity structure beneath the central Mariana subduction system

    Get PDF
    Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 11 (2010): Q09003, doi:10.1029/2010GC003101.This paper reports on a magnetotelluric (MT) survey across the central Mariana subduction system, providing a comprehensive electrical resistivity image of the upper mantle to address issues of mantle dynamics in the mantle wedge and beneath the slow back-arc spreading ridge. After calculation of MT response functions and their correction for topographic distortion, two-dimensional electrical resistivity structures were generated using an inversion algorithm with a smoothness constraint and with additional restrictions imposed by the subducting slab. The resultant isotropic electrical resistivity structure contains several key features. There is an uppermost resistive layer with a thickness of up to 150 km beneath the Pacific Ocean Basin, 80–100 km beneath the Mariana Trough, and 60 km beneath the Parece Vela Basin along with a conductive mantle beneath the resistive layer. A resistive region down to 60 km depth and a conductive region at greater depth are inferred beneath the volcanic arc in the mantle wedge. There is no evidence for a conductive feature beneath the back-arc spreading center. Sensitivity tests were applied to these features through inversion of synthetic data. The uppermost resistive layer is the cool, dry residual from the plate accretion process. Its thickness beneath the Pacific Ocean Basin is controlled mainly by temperature, whereas the roughly constant thickness beneath the Mariana Trough and beneath the Parece Vela Basin regardless of seafloor age is controlled by composition. The conductive mantle beneath the uppermost resistive layer requires hydration of olivine and/or melting of the mantle. The resistive region beneath the volcanic arc down to 60 km suggests that fluids such as melt or free water are not well connected or are highly three-dimensional and of limited size. In contrast, the conductive region beneath the volcanic arc below 60 km depth reflects melting and hydration driven by water release from the subducting slab. The resistive region beneath the back-arc spreading center can be explained by dry mantle with typical temperatures, suggesting that any melt present is either poorly connected or distributed discontinuously along the strike of the ridge. Evidence for electrical anisotropy in the central Mariana upper mantle is weak.Japanese participation in the Marianas experiment was supported by Japan Society for the Promotion of Science for Grant-In-Aid for Scientific Research (15340149 and 12440116), Japan-U.S. Integrated Action Program and the 21st Century COE Program of Origin and Evolution of Planetary Systems, and by the Ministry of Education, Culture, Sports, Science, and Technology for the Stagnant Slab Project, Grant-in Aid for Scientific Research on Priority Areas (17037003 and 16075204). U.S. participation was supported by NSF grant OCE0405641. Australian support came from Flinders University. T. M. is supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Deep Ocean Exploration Institute
    corecore