2,188 research outputs found
Diamonds in HD 97048
We present adaptive optics high angular resolution (\sim0\farcs1)
spectroscopic observations in the 3 m region of the Herbig Ae/Be star HD
97048. For the first time, we spatially resolve the emission in the diamond
features at 3.43 and 3.53 m and in the adjacent continuum. Using both the
intensity profiles along the slit and reconstructed two-dimensional images of
the object, we derive full-width at half-maximum sizes consistent with the
predictions for a circumstellar disk seen pole-on. The diamond emission
originates in the inner region ( AU) of the disk.Comment: ApJLetter, in pres
CARMA interferometric observations of 2MASS J044427+2512: the first spatially resolved observations of thermal emission of a brown dwarf disk
We present CARMA 1.3 mm continuum data of the disk surrounding the young
brown dwarf 2MASS J044427+2512 in the Taurus molecular cloud. The high angular
resolution of the CARMA observations (0.16 arcsec) allows us to spatially
resolve for the first time the thermal emission from dust around a brown dwarf.
We analyze the interferometric visibilities and constrain the disk outer radius
adopting disk models with power-law radial profiles of the dust surface
density. In the case of a power-law index equal to or lower than 1, we obtain a
disk radius in the range of about 15 - 30 AU, while larger disks are inferred
for steeper radial profiles. By combining this information on the disk spatial
extent with the sub-mm spectral index of this source we find conclusive
evidence for mm-sized grains, or larger, in this brown dwarf disk. We discuss
the implications of our results on the models of dust evolution in
proto-planetary disks and brown dwarf formation.Comment: 14 pages, 3 figures, Accepted for publication in ApJ Letter
Protostellar clusters in intermediate-mass (IM) star forming regions
The transition between the low density groups of T Tauri stars and the high
density clusters around massive stars occurs in the intermediate-mass (IM)
range (M2--8 M). High spatial resolution studies of IM young
stellar objects (YSO) can provide important clues to understand the clustering
in massive star forming regions.
Aims: Our aim is to search for clustering in IM Class 0 protostars. The high
spatial resolution and sensitivity provided by the new A configuration of the
Plateau de Bure Interferometer (PdBI) allow us to study the clustering in these
nearby objects.
Methods: We have imaged three IM Class 0 protostars (Serpens-FIRS 1, IC 1396
N, CB 3) in the continuum at 3.3 and 1.3mm using the PdBI. The sources have
been selected with different luminosity to investigate the dependence of the
clustering process on the luminosity of the source.
Results: Only one millimeter (mm) source is detected towards the low
luminosity source Serpens--FIRS 1. Towards CB 3 and IC1396 N, we detect two
compact sources separated by 0.05 pc. The 1.3mm image of IC 1396 N, which
provides the highest spatial resolution, reveal that one of these cores is
splitted in, at least, three individual sources.Comment: 4 pages, 3 figures, accepted for publication in Astronomy and
Astrophysics Letters (Special Feature IRAM/PdB
X-Shooter study of accretion in -Ophiucus: very low-mass stars and brown dwarfs
We present new VLT/X-Shooter optical and NIR spectra of a sample of 17
candidate young low-mass stars and BDs in the rho-Ophiucus cluster. We derived
SpT and Av for all the targets, and then we determined their physical
parameters. All the objects but one have M*<0.6 Msun, and 8 have mass below or
close to the hydrogen-burning limit. Using the intensity of various emission
lines present in their spectra, we determined the Lacc and Macc for all the
objects. When compared with previous works targeting the same sample, we find
that, in general, these objects are not as strongly accreting as previously
reported, and we suggest that the reason is our more accurate estimate of the
photospheric parameters. We also compare our findings with recent works in
other slightly older star-forming regions to investigate possible differences
in the accretion properties, but we find that the accretion properties for our
targets have the same dependence on the stellar and substellar parameters as in
the other regions. This leads us to conclude that we do not find evidence for a
different dependence of Macc with M* when comparing low-mass stars and BDs.
Moreover, we find a similar small (1 dex) scatter in the Macc-M* relation as in
some of our recent works in other star-forming regions, and no significant
differences in Macc due to different ages or properties of the regions. The
latter result suffers, however, from low statistics and sample selection biases
in the current studies. The small scatter in the Macc-M* correlation confirms
that Macc in the literature based on uncertain photospheric parameters and
single accretion indicators, such as the Ha width, can lead to a scatter that
is unphysically large. Our studies show that only broadband spectroscopic
surveys coupled with a detailed analysis of the photospheric and accretion
properties allows us to properly study the evolution of disk accretion rates.Comment: accepted for publication in Astronomy & Astrophysics. Abstract
shortened to fit arXiv constraint
The effect of local optically thick regions in the long-wave emission of young circumstellar disks
Multi-wavelength observations of protoplanetary disks in the sub-millimeter
continuum have measured spectral indices values which are significantly lower
than what is found in the diffuse interstellar medium. Under the assumption
that mm-wave emission of disks is mostly optically thin, these data have been
generally interpreted as evidence for the presence of mm/cm-sized pebbles in
the disk outer regions. In this work we investigate the effect of possible
local optically thick regions on the mm-wave emission of protoplanetary disks
without mm/cm-sized grains. A significant local increase of the optical depth
in the disk can be caused by the concentration of solid particles, as predicted
to result from a variety of proposed physical mechanisms. We calculate the
filling factors and implied overdensities these optically thick regions would
need to significantly affect the millimeter fluxes of disks, and we discuss
their plausibility. We find that optically thick regions characterized by
relatively small filling factors can reproduce the mm-data of young disks
without requesting emission from mm/cm-sized pebbles. However, these optically
thick regions require dust overdensities much larger than what predicted by any
of the physical processes proposed in the literature to drive the concentration
of solids. We find that only for the most massive disks it is possible and
plausible to imagine that the presence of optically thick regions in the disk
is responsible for the low measured values of the mm spectral index. For the
majority of the disk population, optically thin emission from a population of
large mm-sized grains remains the most plausible explanation. The results of
this analysis further strengthen the scenario for which the measured low
spectral indices of protoplanetary disks at mm wavelengths are due to the
presence of large mm/cm-sized pebbles in the disk outer regions.Comment: 13 pages, 2 figures, A&A in pres
Brown dwarf disks with ALMA
We present ALMA continuum and spectral line data at 0.89 mm and 3.2 mm for
three disks surrounding young brown dwarfs and very low mass stars in the
Taurus star forming region. Dust thermal emission is detected and spatially
resolved for all the three disks, while CO(J=3-2) emission is seen in two
disks. We analyze the continuum visibilities and constrain the disks physical
structure in dust. The results of our analysis show that the disks are
relatively large, the smallest one with an outer radius of about 70 AU. The
inferred disk radii, radial profiles of the dust surface density and disk to
central object mass ratios lie within the ranges found for disks around more
massive young stars. We derive from our observations the wavelength dependence
of the millimeter dust opacity. In all the three disks data are consistent with
the presence of grains with at least millimeter sizes, as also found for disks
around young stars, and confirm that the early stages of the solid growth
toward planetesimals occur also around very low mass objects. We discuss the
implications of our findings on models of solids evolution in protoplanetary
disks, on the main mechanisms proposed for the formation of brown dwarfs and
very low mass stars, as well as on the potential of finding rocky and giant
planets around very low mass objects.Comment: 15 pages, 10 figures, accepted for publication in Ap
Grain growth in the envelopes and disks of Class I protostars
We present new 3 mm ATCA data of two Class I Young Stellar Objects in the
Ophiucus star forming region: Elias29 and WL12. For our analysis we compare
them with archival 1.1 mm SMA data. In the (u,v) plane the two sources present
a similar behavior: a nearly constant non-zero emission at long baselines,
which suggests the presence of an unresolved component and an increase of the
fluxes at short baselines, related to the presence of an extended envelope. Our
data analysis leads to unusually low values of the spectral index , which may indicate that mm-sized dust grains have already formed
both in the envelopes and in the disk-like structures at such early stages. To
explore the possible scenarios for the interpretation of the sources we perform
a radiative transfer modeling using a Monte Carlo code, in order to take into
account possible deviations from the Rayleigh-Jeans and optically thin regimes.
Comparison between the model outputs and the observations indicates that dust
grains may form aggregates up to millimeter size already in the inner regions
of the envelopes of Class I YSOs. Moreover, we conclude that the embedded
disk-like structures in our two Class Is are probably very compact, in
particular in the case of WL12, with outer radii down to tens of AU.Comment: 12 pages, 8 figures, Accepted for publication in A&
- …