742 research outputs found
Impact of Si nanocrystals in a-SiOx<Er> in C-Band emission for applications in resonators structures
Si nanocrystals (Si-NC) in a-SiOx were created by high temperature
annealing. Si-NC samples have large emission in a broadband region, 700nm to
1000nm. Annealing temperature, annealing time, substrate type, and erbium
concentration is studied to allow emission at 1550 nm forsamples with erbium.
Emission in the C-Band region is largely reduced by the presence of Si-NC. This
reduction may be due to less efficient energy transfer processes from the
nanocrystals than from the amorphous matrix to the Er3+ ions, perhaps due to
the formation of more centro-symmetric Er3+ sites at the nanocrystal surfaces
or to very different optimal erbium concentrations between amorphous and
crystallized samples.Comment: 3 pages, 4 figure
Resonant structures based on amorphous silicon sub-oxide doped with Er3+ with silicon nanoclusters for an efficient emission at 1550 nm
We present a resonant approach to enhance 1550nm emission efficiency of
amorphous silicon sub-oxide doped with Er3+ (a-SiOx) layers with silicon
nanoclusters (Si-NC). Two distinct techniques were combined to provide a
structure that allowed increasing approximately 12x the 1550nm emission. First,
layers of SiO2 were obtained by conventional wet oxidation and a-SiOx
matrix was deposited by reactive RF co-sputtering. Secondly, an extra pump
channel (4I15/2 to 4I9/2) of Er3+ was created due to Si-NC formation on the
same a-SiOx matrix via a hard annealing at 1150 C. The SiO2 and the
a-SiOx thicknesses were designed to support resonances near the pumping
wavelength (~500nm), near the Si-NC emission (~800nm) and near the a-SiOx
emission (~1550nm) enhancing the optical pumping process.Comment: 14 pages, 4 figures, in submissio
Correlated theory of triplet photoinduced absorption in phenylene-vinylene chains
In this paper we present results of large-scale correlated calculations of
triplet photoinduced absorption (PA) spectrum of oligomers of
poly-(para)phenylenevinylene (PPV) containing up to five phenyl rings. In
particular, the high-energy features in the triplet PA spectrum of oligo-PPVs
are the focus of this study, which, so far, have not been investigated
theoretically, or experimentally. The calculations were performed using the
Pariser-Parr-Pople (PPP) model Hamiltonian, and many-body effects were taken
into account by means of multi-reference singles-doubles configuration
interaction procedure (MRSDCI), without neglecting any molecular orbitals. The
computed triplet PA spectrum of oligo-PPVs exhibits rich structure consisting
of alternating peaks of high and low intensities. The predicted higher energy
features of the triplet spectrum can be tested in future experiments.
Additionally, theoretical estimates of exciton binding energy are also
presented.Comment: To appear in Phys. Rev.
Size dependent tunneling and optical spectroscopy of CdSe quantum rods
Photoluminescence excitation spectroscopy and scanning tunneling spectroscopy
are used to study the electronic states in CdSe quantum rods that manifest a
transition from a zero dimensional to a one dimensional quantum confined
structure. Both optical and tunneling spectra show that the level structure
depends primarily on the rod diameter and not on length. With increasing
diameter, the band-gap and the excited state level spacings shift to the red.
The level structure was assigned using a multi-band effective-mass model,
showing a similar dependence on rod dimensions.Comment: Accepted to PRL (nearly final version). 4 pages in revtex, 4 figure
Illumination Driven Energy Level Realignment at Buried Interfaces between Organic Charge Transport Layers and a Lead Halide Perovskite
Tremendous progress in employing metal halide perovskites MHPs in a variety of applications, especially in photovoltaics, has been made in the past decade. To unlock the full potential of MHP materials in optoelectronic devices, an improved understanding of the electronic energy level alignment at perovskite based interfaces is required. This particularly pertains to such interfaces under device operation conditions, e.g. under illumination with visible light such as in a solar cell. Herein, it is revealed that the energy level alignment at the buried interface between a double cation lead halide perovskite film and charge selective organic transport layers changes upon white light illumination. This is found from photoemission experiments performed with the samples in dark and under illumination, and the interfacial energy level shift is reversible. The underlying mechanism is attributed to the accumulation of one charge carrier type within the perovskite film at the interface under illumination, as a result of the charge selective nature of the organic layer. The fact that the interfacial energy level alignment at MHP based junctions under illumination can differ from that in dark is to be taken into account to fully rationalize device characteristic
Stellar ArAr reactions and their effect on light neutron-rich nuclide synthesis
The ArAr ( = 35 d) and
ArAr (269 y) reactions were studied for the first time
with a quasi-Maxwellian ( keV) neutron flux for Maxwellian Average
Cross Section (MACS) measurements at stellar energies. Gas samples were
irradiated at the high-intensity Soreq applied research accelerator
facility-liquid-lithium target neutron source and the Ar/Ar and
Ar/Ar ratios in the activated samples were determined by
accelerator mass spectrometry at the ATLAS facility (Argonne National
Laboratory). The Ar activity was also measured by low-level counting at
the University of Bern. Experimental MACS of Ar and Ar, corrected
to the standard 30 keV thermal energy, are 1.9(3) mb and 1.3(2) mb,
respectively, differing from the theoretical and evaluated values published to
date by up to an order of magnitude. The neutron capture cross sections of
Ar are relevant to the stellar nucleosynthesis of light neutron-rich
nuclides; the two experimental values are shown to affect the calculated mass
fraction of nuclides in the region A=36-48 during the weak -process. The new
production cross sections have implications also for the use of Ar and
Ar as environmental tracers in the atmosphere and hydrosphere.Comment: 18 pages + Supp. Mat. (13 pages) Accepted for publication in Phys.
Rev. Let
Prediction of infrared light emission from pi-conjugated polymers: a diagrammatic exciton basis valence bond theory
There is currently a great need for solid state lasers that emit in the
infrared, as this is the operating wavelength regime for applications in
telecommunications. Existing --conjugated polymers all emit in the visible
or ultraviolet, and whether or not --conjugated polymers that emit in the
infrared can be designed is an interesting challenge. On the one hand, the
excited state ordering in trans-polyacetylene, the --conjugated polymer
with relatively small optical gap, is not conducive to light emission because
of electron-electron interaction effects. On the other hand, excited state
ordering opposite to that in trans-polyacetylene is usually obtained by
chemical modification that increases the effective bond-alternation, which in
turn increases the optical gap. We develop a theory of electron correlation
effects in a model -conjugated polymer that is obtained by replacing the
hydrogen atoms of trans-polyacetylene with transverse conjugated groups, and
show that the effective on-site correlation in this system is smaller than the
bare correlation in the unsubstituted system. An optical gap in the infrared as
well as excited state ordering conducive to light emission is thereby predicted
upon similar structural modifications.Comment: 15 pages, 15 figures, 1 tabl
Isoperimetric Inequalities in Simplicial Complexes
In graph theory there are intimate connections between the expansion
properties of a graph and the spectrum of its Laplacian. In this paper we
define a notion of combinatorial expansion for simplicial complexes of general
dimension, and prove that similar connections exist between the combinatorial
expansion of a complex, and the spectrum of the high dimensional Laplacian
defined by Eckmann. In particular, we present a Cheeger-type inequality, and a
high-dimensional Expander Mixing Lemma. As a corollary, using the work of Pach,
we obtain a connection between spectral properties of complexes and Gromov's
notion of geometric overlap. Using the work of Gunder and Wagner, we give an
estimate for the combinatorial expansion and geometric overlap of random
Linial-Meshulam complexes
Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser
G. A. Turnbull, P. Andrew, M. J. Jory, William L. Barnes, and I. D. W. Samuel, Physical Review B, Vol. 64, article 125122 (2001). "Copyright © 2001 by the American Physical Society."We present an experimental study of the emission characteristics and photonic band structure of a distributed feedback polymer laser, based on the material poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylene vinylene]. We use measurements of the photonic band dispersion to explain how the substrate microstructure modifies both spontaneous and stimulated emission. The lasing structure exhibits a one-dimensional photonic band gap around 610 nm, with lasing occurring at one of the two associated band edges. The band edge (frequency) selection mechanism is found to be a difference in the level of output coupling of the modes associated with the two band edges. This is a feature of the second-order distributed feedback mechanism we have employed and is clearly evident in the measured photonic band structur
- …