1,212 research outputs found

    Observational study of ion-electron equilibration and of cloud evaporation in supernova remnants under the HEAO-2 guest investigator program

    Get PDF
    Observations of three selected supernovae remnants (Cygnus Loop, IC 443, and Puppis A) were made in the forbidden coronal iron lines (Fe X) lambda 6374 and (Fe XIV) lambda 5303. The resulting data was compared quantitatively with Einstein images of the same objects, and an attempt was made to determine (a) the process by which ion and electron energies are equilibrated behind the shock front in the ISM and (b) whether cloud evaporation occurs within the hot remnant interiors. Spatially-resolved X ray emission were modeled for Sedov-Taylor blast wave models of supernovae remnants (SNR) under conditions of non-equlibrium ionization. The computations are intended to provide results that can be directly compared with Einstein high resolution image (HRI) and imaging proportional counter (IPS) data. The computer program for predicting the spatial distribution of HRI and IPS counting rates was completed, and final testing of it had begun

    Forbidden coronal iron line emission in the Puppis A shock front: The effect of inhomogeneities

    Get PDF
    We have obtained CCD images of the shock front at the eastern rim of Puppis A in (Fe X) lambda 6374 and (Fe XIV) lambda 5303 and have compared the optical data to Einstein HRI soft X-ray data. The observed part of the remnant is complex, containing density irregularities. Optical and X-ray data are consistent in showing a nearly flat gradient of ionization behind the shock. To determine conditions in the shock, scans of surface brightness across it in the optical lines were compared to surface brightnesses predicted by idealized Sedov models. We were unable to match both the red and green line scans by a simple, single-component model, and have ascribed the failure to the presence of the density inhomogeneities. Our result has important implications for the determination of SNR shock front models by means of fitting X-ray data with Sedov models

    The distribution of maximum temperatures of coronal active region loops

    Get PDF
    The emission measure distribution across the range 4.5 log T 6.5 was derived for several coronal active regions by combining EUV line fluxes with broadband X-ray fluxes. The distributions of the maximum temperature was then derived using a numerical model. It is shown that the emission measure distribution can be represented over the full range 5.6 log Tm 6.5 by the superposition of simple loop models, if the models incorporate a substantial rise in their individual emission measure distributions near the maximum temperature. The unresolved loops may have substantial area ratios, since it is this ratio that fixes the extent of the rise in the emission measure distribution. Since the bulk of the emission measure is then contributed from the loop tops, the distribution of maximum temperatures has approximately the same shape as does the integrated emission measure distributions. The EUV and X-ray data used were obtained by from two separate experiments on ATM/Skylab

    Model predictions of wind and turbulence profiles associated with an ensemble of aircraft accidents

    Get PDF
    The feasibility of predicting conditions under which wind/turbulence environments hazardous to aviation operations exist is studied by examining a number of different accidents in detail. A model of turbulent flow in the atmospheric boundary layer is used to reconstruct wind and turbulence profiles which may have existed at low altitudes at the time of the accidents. The predictions are consistent with available flight recorder data, but neither the input boundary conditions nor the flight recorder observations are sufficiently precise for these studies to be interpreted as verification tests of the model predictions

    Vortex interactions and decay in aircraft wakes

    Get PDF
    The dynamic interaction of aircraft wake vortices was investigated using both inviscid and viscous models. For the viscous model, a computer code was developed using a second-order closure model of turbulent transport. The phenomenon of vortex merging which results in the rapid aging of a vortex wake was examined in detail. It was shown that the redistribution of vorticity during merging results from both convective and diffusive mechanisms

    Analysis of solar X-ray data

    Get PDF
    Type III solar bursts occurring in the absence of solar flares were observed to be accompanied by weak X-radiation. The energy scale of an OSO-3 soft X-ray ion chamber was assessed using realistic theoretical X-ray spectra. Relationships between soft solar X-rays and solar activity were investigated. These included optical studies, the role of the Type III acceleration mechanism in establishing the soft X-ray source volume, H alpha flare intensity variations, and gross magnetic field structure

    Towards 100% Renewable Energy for Kangaroo Island

    Full text link

    Photospheric network from study of manganese lines

    Full text link
    Area scans with the multi-channel magnetograph at the Kitt Peak McMath Telescope provided simultaneous measures of equivalent widths in two Mn lines, continuum intensity and longitudinal magnetic field component. Observations were carried out with apertures of 2.5″ × 3.5″ arc and 1″ × 1″ arc. For the network elements, which were identified using the magnetic field as tracer, we developed relationships between I Continuum , W λ V Doppler and longitudinal field strength. With a minimum of assumptions it is possible to write from these observed relations an expression connecting true temperature perturbation in the line forming layers of the network to true longitudinal field strength. The results provide some constraints upon possible network models.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43746/1/11207_2004_Article_BF00951834.pd

    Microbial habitat connectivity across spatial scales and hydrothermal temperature gradients at Guaymas Basin

    Get PDF
    The Guaymas Basin (Gulf of California) hydrothermal vent area is known as a dynamic and hydrothermally vented sedimentary system, where the advection and production of a variety of different metabolic substrates support a high microbial diversity and activity in the seafloor. The main objective of our study was to explore the role of temperature and other environmental factors on community diversity, such as the presence of microbial mats and seafloor bathymetry within one hydrothermally vented field of 200 x 250 m dimension. In this field, temperature increased strongly with sediment depth reaching the known limit of life within a few decimeters. Potential sulfate reduction rate as a key community activity parameter was strongly affected by in situ temperature and sediment depth, declining from high rates of 1-5 jimol m1-1 d-1 at the surface to the detection limit below 5 cm sediment depth, despite the presence of sulfate and hydrocarbons. Automated Ribosomal lntergenic Spacer Analysis yielded a high-resolution fingerprint of the dominant members of the bacterial community. Our analyses showed strong temperature and sediment depth effects on bacterial cell abundance and Operational Taxonomic Units (OTUs) number, both declining by more than one order of magnitude below the top 5 cm of the sediment surface. Another fraction of the variation in diversity and community structure was explained by differences in the local bathymetry and spatial position within the vent field. Nevertheless, more than 80% of all detected OTUs were shared among the different temperature realms and sediment depths, after being classified as cold (T 40 C) temperature conditions, with significant OTU overlap with the richer surface communities. Overall, this indicates a high connectivity of benthic bacterial habitats in this dynamic and heterogeneous marine ecosystem influenced by strong hydrothermalism

    Observations of Binary Stars with the Differential Speckle Survey Instrument. V. Toward an Empirical Metal-Poor Mass-Luminosity Relation

    Get PDF
    In an effort to better understand the details of the stellar structure and evolution of metal poor stars, the Gemini North telescope was used on two occasions to take speckle imaging data of a sample of known spectroscopic binary stars and other nearby stars in order to search for and resolve close companions. The observations were obtained using the Differential Speckle Survey Instrument, which takes data in two filters simultaneously. The results presented here are of 90 observations of 23 systems in which one or more companions was detected, and 6 stars where no companion was detected to the limit of the camera capabilities at Gemini. In the case of the binary and multiple stars, these results are then further analyzed to make first orbit determinations in five cases, and orbit refinements in four other cases. Mass information is derived, and since the systems span a range in metallicity, a study is presented that compares our results with the expected trend in total mass as derived from the most recent Yale isochrones as a function of metal abundance. These data suggest that metal-poor main-sequence stars are less massive at a given color than their solar-metallicity analogues in a manner consistent with that predicted from the theory
    • …
    corecore