236 research outputs found

    Cloned cattle derived from a novel zona-free embryo reconstruction system

    Get PDF
    As the demand for cloned embryos and offspring increases, the need arises for the development of nuclear transfer procedures that are improved in both efficiency and ease of operation. Here, we describe a novel zona-free cloning method that doubles the throughput in cloned bovine embryo production over current procedures and generates viable offspring with the same efficiency. Elements of the procedure include zona-free enucleation without a holding pipette, automated fusion of 5-10 oocyte-donor cell pairs and microdrop in vitro culture. Using this system, zona-free embryos were reconstructed from five independent primary cell lines and cultured either singularly (single-IVC) or as aggregates of three (triple-IVC). Blastocysts of transferable quality were obtained at similar rates from zona-free single-IVC, triple-IVC, and control zona-intact embryos (33%, 25%, and 29%, respectively). In a direct comparison, there was no significant difference in development to live calves at term between single-IVC, triple-IVC, and zona-intact embryos derived from the same adult fibroblast line (10%, 13%, and 15%, respectively). This zona-free cloning method could be straightforward for users of conventional cloning procedures to adopt and may prove a simple, fast, and efficient alternative for nuclear cloning of other species as well

    A comparison of polarized and non-polarized human endometrial monolayer culture systems on murine embryo development

    Get PDF
    BACKGROUND: Co-culture of embryos with various somatic cells has been suggested as a promising approach to improve embryo development. Despite numerous reports regarding the beneficial effects of epithelial cells from the female genital tract on embryo development in a co-culture system, little is known about the effect of these cells when being cultured under a polarized condition on embryo growth. Our study evaluated the effects of in vitro polarized cells on pre-embryo development. METHODS: Human endometrial tissue was obtained from uterine specimens excised at total hysterectomy performed for benign indications. Epithelial cells were promptly isolated and cultured either on extra-cellular matrix gel (ECM-Gel) coated millipore filter inserts (polarized) or plastic surfaces (non-polarized). The epithelial nature of the cells cultured on plastic was confirmed through immunohistochemistry, and polarization of cells cultured on ECM-Gel was evaluated by transmission electron microscopy (TEM). One or two-cell stage embryos of a superovulated NMRI mouse were then flushed and placed in culture with either polarized or non-polarized cells and medium alone. Development rates were determined for all embryos daily and statistically compared. At the end of the cultivation period, trophectoderm (TE) and inner cell mass (ICM) of expanded blastocysts from each group were examined microscopically. RESULTS: Endometrial epithelial cells cultured on ECM-Gel had a highly polarized columnar shape as opposed to the flattened shape of the cells cultured on a plastic surface. The two-cell embryos cultured on a polarized monolayer had a higher developmental rate than those from the non-polarized cells. There was no statistically significant difference; still, the blastocysts from the polarized monolayer, in comparison with the non-polarized group, had a significantly higher mean cell number. The development of one-cell embryos in the polarized and non-polarized groups showed no statistically significant difference. CONCLUSION: Polarized cells could improve in vitro embryo development from the two-cell stage more in terms of quality (increasing blastocyst cellularity) than in terms of developmental rate

    Improved in vitro development of cloned bovine embryos using S-adenosylhomocysteine, a non-toxic epigenetic modifying reagent.

    Get PDF
    In this study, fibroblast cells were stably transfected with mouse POU5F1 promoter-driven enhanced green fluorescent protein (EGFP) to investigate the effect of S-adenosylhomocysteine (SAH), the reversible non-toxic inhibitor of DNA-methyltransferases (DNMTs), at different intervals post-fusion on in vitro development of cloned bovine embryos. Treatment with SAH for 12 hr resulted in 54.6 ± 7.7% blastocyst production, which was significantly greater than in vitro fertilized embryos (IVF: 37.2 ± 2.7%), cloned embryos treated with SAH for 72 hr (31.0 ± 7.6%), and control cloned embryos (34.6 ± 3.6%). The fluorescence intensities of the EGFP-POU5F1 reporter gene at all intervals of SAH treatment, except of 72 hr, were significantly higher than control somatic cell nuclear transfers (SCNT) embryos. The intensity of DNA-methylation in cloned embryos treated with SAH for 48 hr was similar to that of IVF embryos, and was significantly lower than the other SCNT groups. The levels of H3K9 acetylation in all SCNT groups were significantly lower than IVF embryos. Real-time PCR analysis of gene expression revealed significantly higher expression of POU5F1 in cloned versus IVF blastocysts. Neither embryo production method (SCNT vs. IVF) nor the SAH treatment interval affected expression of the BCL2 gene. Cloned embryos at all intervals of SAH treatment, except for 24 hr, had significantly increased VEGF transcript compared to IVF and control SCNT embryos. It was suggested that the time interval of DNMT inhibition may have important consequences on different in vitro features of bovine SCNT, and the improving effects of DNMT inhibition on developmental competency of cloned embryos are restricted to a specific period of time preceding de novo methylation. Mol. Reprod. Dev. 78:576–584, 2011

    Utilization of endogenous fatty acid stores for energy production in bovine preimplantation embryos

    Get PDF
    Although current embryo culture media are based on carbohydrate metabolism of embryos, little is known about metabolism of endogenous lipids. L-carnitine is a β-oxidation cofactor absent in most culture media. The objective was to investigate the influence of L-carnitine supplementation on bovine embryo development. Abattoir-derived bovine cumulus oocyte complexes were cultured and fertilized. Post-fertilization, presumptive zygotes were transferred into a basic cleavage medium ± carbohydrates (glucose, lactate and pyruvate) ± 5 mm L-carnitine and cultured for 4 days in vitro. In the absence of carbohydrates during culture, embryos arrested at the 2- and 4-cell stages. Remarkably, +L-carnitine increased development to the morula stage compared to +carbohydrates alone (P < 0.001). The beneficial effects of L-carnitine were further demonstrated by inclusion of carbohydrates, with 14-fold more embryos reaching the morula stage after culture in the +carbohydrates +L-carnitine group compared to the +carbohydrates group (P < 0.05). Whereas there was a trend for +L-carnitine to increase ATP (P = 0.09), ADP levels were higher and ATP: ADP ratio were 1.9-fold lower (main effect, P < 0.05) compared to embryos cultured in -L-carnitine. Therefore, we inferred that +L-carnitine embryos were more metabolically active, with higher rates of ATP-ADP conversion. In conclusion, L-carnitine supplementation supported precompaction embryo development and there was an additive effect of +L-carnitine +carbohydrates on early embryo development, most likely through increased β-oxidation within embryos.Melanie L. Sutton-McDowall, Deanne Feil, Rebecca L. Robker, Jeremy G. Thompson, Kylie R. Dunnin

    Studies on the in vivo cleavage and the in vitro culture of New Zealand romney sheep ova : a thesis presented in partial fulfilment of the requirements for the degree of Master of Agricultural Science at Massey University

    Get PDF
    The purpose of this present study was to observe the cleavage of fertilised Romney ewe ova in vivo and to compare this with cleavage of ova cultured in vitro. A method of long term in vitro culture of ova was developed and the technique of ovum transplantation used to test ovum viability
    corecore