22 research outputs found

    Airway smooth muscle relaxation results from a reduction in the frequency of Ca(2+ )oscillations induced by a cAMP-mediated inhibition of the IP(3 )receptor

    Get PDF
    BACKGROUND: It has been shown that the contractile state of airway smooth muscle cells (SMCs) in response to agonists is determined by the frequency of Ca(2+ )oscillations occurring within the SMCs. Therefore, we hypothesized that the relaxation of airway SMCs induced by agents that increase cAMP results from the down-regulation or slowing of the frequency of the Ca(2+ )oscillations. METHODS: The effects of isoproterenol (ISO), forskolin (FSK) and 8-bromo-cAMP on the relaxation and Ca(2+ )signaling of airway SMCs contracted with methacholine (MCh) was investigated in murine lung slices with phase-contrast and laser scanning microscopy. RESULTS: All three cAMP-elevating agents simultaneously induced a reduction in the frequency of Ca(2+ )oscillations within the SMCs and the relaxation of contracted airways. The decrease in the Ca(2+ )oscillation frequency correlated with the extent of airway relaxation and was concentration-dependent. The mechanism by which cAMP reduced the frequency of the Ca(2+ )oscillations was investigated. Elevated cAMP did not affect the re-filling rate of the internal Ca(2+ )stores after emptying by repetitive exposure to 20 mM caffeine. Neither did elevated cAMP limit the Ca(2+ )available to stimulate contraction because an elevation of intracellular Ca(2+ )concentration induced by exposure to a Ca(2+ )ionophore (ionomycin) or by photolysis of caged-Ca(2+ )did not reverse the effect of cAMP. Similar results were obtained with iberiotoxin, a blocker of Ca(2+)-activated K(+ )channels, which would be expected to increase Ca(2+ )influx and contraction. By contrast, the photolysis of caged-IP(3 )in the presence of agonist, to further elevate the intracellular IP(3 )concentration, reversed the slowing of the frequency of the Ca(2+ )oscillations and relaxation of the airway induced by FSK. This result implied that the sensitivity of the IP(3)R to IP(3 )was reduced by FSK and this was supported by the reduced ability of IP(3 )to release Ca(2+ )in SMCs in the presence of FSK. CONCLUSION: These results indicate that the relaxant effect of cAMP-elevating agents on airway SMCs is achieved by decreasing the Ca(2+ )oscillation frequency by reducing internal Ca(2+ )release through IP(3 )receptors

    Pharmacologically Reversible, Loss of Function Mutations in the tm2 and tm4 Inner Pore Helices of Trek-1 k2p Channels

    Get PDF
    A better understanding of the gating of TREK two pore domain potassium (K2P) channels and their activation by compounds such as the negatively charged activator, flufenamic acid (FFA) is critical in the search for more potent and selective activators of these channels. Currents through wild-type and mutated human K2P channels expressed in tsA201 cells were measured using whole-cell patch-clamp recordings in the presence and absence of FFA. Mutation of the TM2.6 residue of TREK-1 to a phenylalanine (G171F) and a similar mutation of TM4.6 (A286F) substantially reduced current through TREK-1 channels. In complementary experiments, replacing the natural F residues at the equivalent position in TRESK channels, significantly enhanced current. Known, gain of function mutations of TREK-1 (G137I, Y284A) recovered current through these mutated channels. This reduction in current could be also be reversed pharmacologically, by FFA. However, an appropriate length MTS (MethaneThioSulfonate) cross-linking reagent (MTS14) restricted the activation of TREK-1_A286C channels by repeated application of FFA. This suggests that the cross-linker stabilises the channel in a conformation which blunts FFA activation. Pharmacologically reversible mutations of TREK channels will help to clarify the importance of these channels in pathophysiological conditions such as pain and depression

    Activation of TREK currents by riluzole in three subgroups of cultured mouse nodose ganglion neurons

    Get PDF
    Two-pore domain potassium channels (K2P) constitute major candidates for the regulation of background potassium currents in mammalian cells. Channels of the TREK subfamily are also well positioned to play an important role in sensory transduction due to their sensitivity to a large number of physiological and physical stimuli (pH, mechanical, temperature). Following our previous report describing the molecular expression of different K2P channels in the vagal sensory system, here we confirm that TREK channels are functionally expressed in neurons from the mouse nodose ganglion (mNG). Neurons were subdivided into three groups (A, Ah and C) based on their response to tetrodotoxin and capsaicin. Application of the TREK subfamily activator riluzole to isolated mNG neurons evoked a concentration-dependent outward current in the majority of cells from all the three subtypes studied. Riluzole increased membrane conductance and hyperpolarized the membrane potential by approximately 10 mV when applied to resting neurons. The resting potential was similar in all three groups, but C cells were clearly less excitable and showed smaller hyperpolarization-activated currents at -100 mV and smaller sustained currents at -30 mV. Our results indicate that the TREK subfamily of K2P channels might play an important role in the maintenance of the resting membrane potential in sensory neurons of the autonomic nervous system, suggesting its participation in the modulation of vagal reflexes

    A molecular signaling model of platelet phosphoinositide and calcium regulation during homeostasis and P2Y1 activation

    No full text
    To quantify how various molecular mechanisms are integrated to maintain platelet homeostasis and allow responsiveness to adenosine diphosphate (ADP), we developed a computational model of the human platelet. Existing kinetic information for 77 reactions, 132 fixed kinetic rate constants, and 70 species was combined with electrochemical calculations, measurements of platelet ultrastructure, novel experimental results, and published single-cell data. The model accurately predicted: (1) steady-state resting concentrations for intracellular calcium, inositol 1,4,5-trisphosphate, diacylglycerol, phosphatidic acid, phosphatidylinositol, phosphatidylinositol phosphate, and phosphatidylinositol 4,5-bisphosphate; (2) transient increases in intracellular calcium, inositol 1,4,5-trisphosphate, and Gq-GTP in response to ADP; and (3) the volume of the platelet dense tubular system. A more stringent test of the model involved stochastic simulation of individual platelets, which display an asynchronous calcium spiking behavior in response to ADP. Simulations accurately reproduced the broad frequency distribution of measured spiking events and demonstrated that asynchronous spiking was a consequence of stochastic fluctuations resulting from the small volume of the platelet. The model also provided insights into possible mechanisms of negative-feedback signaling, the relative potency of platelet agonists, and cell-to-cell variation across platelet populations. This integrative approach to platelet biology offers a novel and complementary strategy to traditional reductionist methods

    K(2P)2.1 (TREK-1)-activator complexes reveal a cryptic selectivity filter binding site

    No full text
    Polymodal thermo- and mechanosensitive two-pore domain potassium (K-2P) channels of the TREK1 subfamily generate `leak' currents that regulate neuronal excitability, respond to lipids, temperature and mechanical stretch, and influence pain, temperature perception and anaesthetic responses(1-3). These dimeric voltage-gated ion channel (VGIC) superfamily members have a unique topology comprising two pore-forming regions per subunit(4-6). In contrast to other potassium channels, K-2P channels use a selectivity filter `C-type' gate(7-10) as the principal gating site. Despite recent advances(3,11,12), poor pharmacological profiles of K2P channels limit mechanistic and biological studies. Here we describe a class of small-molecule TREK activators that directly stimulate the C-type gate by acting as molecular wedges that restrict interdomain interface movement behind the selectivity filter. Structures of K(2P)2.1 (also known as TREK-1) alone and with two selective K(2P)2.1 (TREK-1) and K(2P)10.1 (TREK-2) activators-an N-aryl-sulfonamide, ML335, and a thiophene-carboxamide, ML402-define a cryptic binding pocket unlike other ion channel small-molecule binding sites and, together with functional studies, identify a cation-p interaction that controls selectivity. Together, our data reveal a druggable K-2P site that stabilizes the C-type gate `leak mode' and provide direct evidence for K-2P selectivity filter gating
    corecore