158 research outputs found

    Upping the Ante!: Physical Therapist Management of Femoral Anteversion

    Get PDF
    The purpose of this case report is to describe the outcomes following the rehabilitation of an 11-year-old female athlete with femoral anteversion utilizing Pilates based therapy in conjunction with traditional physical therapy.https://soar.usa.edu/flsaspring2017/1019/thumbnail.jp

    Interdisciplinary care clinics in chronic kidney disease

    Get PDF
    The burden of chronic kidney disease (CKD) is substantial, and is associated with high hospitalization rates, premature deaths, and considerable health care costs. These factors provide strong rationale for quality improvement initiatives in CKD care. The interdisciplinary care clinic (IDC) has emerged as one solution to improving CKD care. The IDC team may include other physicians, advanced practice providers, nurses, dietitians, pharmacists, and social workers--all working together to provide effective care to patients with chronic kidney disease. Studies suggest that IDCs may improve patient education and preparedness prior to kidney failure, both of which have been associated with improved health outcomes. Interdisciplinary care may also delay the progression to end-stage renal disease and reduce mortality. While most studies suggest that IDC services are likely cost-effective, financing IDCs is challenging and many insurance providers do not pay for all of the services. There are also no robust long-term studies demonstrating the cost-effectiveness of IDCs. This review discusses IDC models and its potential impact on CKD care as well as some of the challenges that may be associated with implementing these clinics

    Low-temperature redetermination of benzofurazan 1-oxide

    Get PDF
    In the six-membered ring of the low-temperature crystal structure of benzofurazan 1-oxide, C6H4N2O2, the two C atoms adjacent to the N atoms are linked by a delocalized aromatic bond [1.402 (2) Å]; each is connected to its neighbour by a longer, more localized, bond [1.420 (2), 1.430 (2) Å]. However, the next two bonds in the ring approximate double bonds [1.357 (2), 1.366 (2) Å]. As such, the six-membered ring is better described as a cyclo­hexa­diene system, in contrast to the description in the room-temperature structure reported by Britton & Olson (1979 ▶) [Acta Cryst. B35, 3076–3078]

    δ-Catenin promotes prostate cancer cell growth and progression by altering cell cycle and survival gene profiles

    Get PDF
    Background: delta-Catenin is a unique member of delta-catenin/armadillo domain superfamily proteins and its primary expression is restricted to the brain. However, delta-catenin is upregulated in human prostatic adenocarcinomas, although the effects of delta-catenin overexpression in prostate cancer are unclear. We hypothesized that delta-catenin plays a direct role in prostate cancer progression by altering gene profiles of cell cycle regulation and cell survival. Results: We employed gene transfection and small interfering RNA to demonstrate that increased delta-catenin expression promoted, whereas its knockdown suppressed prostate cancer cell viability. delta-Catenin promoted prostate cancer cell colony formation in soft agar as well as tumor xenograft growth in nude mice. Deletion of either the amino-terminal or carboxyl-terminal sequences outside the armadillo domains abolished the tumor promoting effects of delta-catenin. Quantitative RT2 Profilerâ„¢ PCR Arrays demonstrated gene alterations involved in cell cycle and survival regulation. delta-Catenin overexpression upregulated cyclin D1 and cdc34, increased phosphorylated histone-H3, and promoted the entry of mitosis. In addition, delta-catenin overexpression resulted in increased expression of cell survival genes Bcl-2 and survivin while reducing the cell cycle inhibitor p21Cip1. Conclusion: Taken together, our studies suggest that at least one consequence of an increased expression of delta-catenin in human prostate cancer is the alteration of cell cycle and survival gene profiles, thereby promoting tumor progression. Originally published Molecular Cancer, Vol. 8, No. 19, Mar 200

    Cyclic voltammetry of some quinoxaline di-N-oxides and quinoxalines in dimethylformamide

    Full text link
    The first cathodic reductions of two series of substituted quinoxaline di-N-oxides and quinoxalines in dimethylformamide were measured. The effect of substituent on these reductions is reported and reversibility is discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30034/1/0000402.pd

    The SPACE Computer Code for Analyzing the International Space Station Electrical Power System: Past, Present, and Future

    Get PDF
    The System Power Analysis for Capability Evaluation (SPACE) computer code was initially developed by NASA in 1988 to assess the Space Station Freedom electric power system and later adapted to support contractor electrical power system capability analyses for the International Space Station (ISS). Over time, the code has supported many efforts such as ISS redesign activities in the early 1990s, assessment of time-phased loads against power system operating limits for future ISS assembly flights (including Certification of Flight Readiness reviews by the ISS program office), and determining the optimum solar array gimbal positions while respecting keep-out zones which minimize both solar array contamination and structural loads. The code has been validated by comparisons with ISS on-orbit data in multiple validation episodes. Recent updates to the code include the incorporation of a Lithium-Ion battery model in addition to the Nickel Hydrogen battery model and modifications to the solar array degradation model to better match on-orbit test results. SPACE has also been extended beyond the ISS to include modeling of the Orion Multi-Purpose Crew Vehicle electrical power system (SPACE-MPCV) and Mars Surface Electrical Power Systems (MSEPS). Portions of SPACE were integrated with a trajectory code to form a Solar Electric Propulsion Simulation (SEPSim), which can be used for analyzing solar electric propulsion missions. In addition, SPACE methods and subroutines have been adapted to a multitude of other projects. This paper summarizes the initial code development and subsequent code utilization in the context of the overall ISS program development and on-orbit operations. Recent updates and results from the code are discussed, including preliminary analyses for the Orion power system

    Targeting prostate cancer based on signal transduction and cell cycle pathways

    Get PDF
    Prostate cancer remains a leading cause of death in men despite increased capacity to diagnose at earlier stages. After prostate cancer has become hormone independent, which often occurs after hormonal ablation therapies, it is difficult to effectively treat. Prostate cancer may arise from mutations and dysregulation of various genes involved in regulation signal transduction (e.g., PTEN, Akt, etc.,) and the cell cycle (e.g., p53, p21Cip1, p27Kip1, Rb, etc.,). This review focuses on the aberrant interactions of signal transduction and cell cycle genes products and how they can contribute to prostate cancer and alter therapeutic effectiveness. Originally published Cell Cycle, Vol. 7, No. 12, June 200

    Roles of the RAF/MEK/ERK Pathway in Cell Growth, Malignant Transformation and Drug Resistance

    Get PDF
    Growth factors and mitogens use the Ras/Raf/MEK/ERK signaling cascade to transmit signals from their receptors to regulate gene expression and prevent apoptosis. Some components of these pathways are mutated or aberrantly expressed in human cancer (e.g., Ras, B-Raf). Mutations also occur at genes encoding upstream receptors (e.g., EGFR and Flt-3) and chimeric chromosomal translocations (e.g., BCR-ABL) which transmit their signals through these cascades. Even in the absence of obvious genetic mutations, this pathway has been reported to be activated in over 50% of acute myelogenous leukemia and acute lymphocytic leukemia and is also frequently activated in other cancer types (e.g., breast and prostate cancers). Importantly, this increased expression is associated with a poor prognosis. The Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt pathways interact with each other to regulate growth and in some cases tumorigenesis. For example, in some cells, PTEN mutation may contribute to suppression of the Raf/MEK/ERK cascade due to the ability of activated Akt to phosphorylate and inactivate different Rafs. Although both of these pathways are commonly thought to have anti-apoptotic and drug resistance effects on cells, they display different cell lineage specific effects. For example, Raf/MEK/ERK is usually associated with proliferation and drug resistance of hematopoietic cells, while activation of the Raf/MEK/ERK cascade is suppressed in some prostate cancer cell lines which have mutations at PTEN and express high levels of activated Akt. Furthermore the Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt pathways also interact with the p53 pathway. Some of these interactions can result in controlling the activity and subcellular localization of Bim, Bak, Bax, Puma and Noxa. Raf/MEK/ERK may promote cell cycle arrest in prostate cells and this may be regulated by p53 as restoration of wild-type p53 in p53 deficient prostate cancer cells results in their enhanced sensitivity to chemotherapeutic drugs and increased expression of Raf/MEK/ERK pathway. Thus in advanced prostate cancer, it may be advantageous to induce Raf/MEK/ERK expression to promote cell cycle arrest, while in hematopoietic cancers it may be beneficial to inhibit Raf/MEK/ERK induced proliferation and drug resistance. Thus the Raf/MEK/ERK pathway has different effects on growth, prevention of apoptosis, cell cycle arrest and induction of drug resistance in cells of various lineages which may be due to the presence of functional p53 and PTEN and the expression of lineage specific factors. Originally published Biochim Biophys Acta, Vol. 1773, No. 8, August 200

    Targeting signaling and apoptotic pathways involved in chemotherapeutic drug-resistance of hematopoietic cells

    Get PDF
    A critical problem in leukemia as well as other cancer therapies is the development of chemotherapeutic drug-resistance. We have developed models of hematopoietic drug resistance that are based on expression of dominant-negative TP53 [TP53 (DN)] or constitutively-active MEK1 [MEK1(CA)] oncogenes in the presence of chemotherapeutic drugs. In human cancer, functional TP53 activity is often lost in human cancers. Also, activation of the Raf/MEK/ERK pathway frequently occurs due to mutations/ amplification of upstream components of this and other interacting pathways. FL5.12 is an interleukin-3 (IL−3) dependent hematopoietic cell line that is sensitive to doxorubicin (a.k.a Adriamycin). FL/Doxo is a derivative cell line that was isolated by culturing the parental FL5.12 cells in doxorubicin for prolonged periods of time. FL/Doxo + TP53 (DN) and FL/Doxo + MEK1 (CA) are FL/Doxo derivate cell lines that were infected with retrovirus encoding TP53 (DN) or MEK1 (CA) and are more resistant to doxorubicin than FL/Doxo cells. This panel of cell lines displayed differences in the sensitivity to inhibitors that suppress mTORC1, BCL2/BCLXL, MEK1 or MDM2 activities, as well as, the proteasomal inhibitor MG132. The expression of key genes involved in cell growth and drug-resistance (e.g., MDM2, MDR1, BAX) also varied in these cells. Thus, we can begin to understand some of the key genes that are involved in the resistance of hematopoietic cells to chemotherapeutic drugs and targeted therapeutics
    corecore