54 research outputs found

    Taking AIM at serious illness: implementing an access to investigational medicines expanded access program

    Get PDF
    When seriously ill patients have exhausted all treatment options available as part of usual care, the use of investigational agents may be warranted. Food and Drug Administration’s (FDA) Expanded Access (EA) pathway provides a mechanism for these patient’s physicians to pursue use of an investigational agent outside of a clinical trial when trial enrollment is not a feasible option. Though FDA has recently implemented processes to significantly streamline the regulatory portion of the process, the overall pathway has several time-consuming components including communication with the pharmaceutical company and the associated institutional requirements for EA use (contracting, Institutional Review Board [IRB], pharmacy, billing). Here, we present our experience building infrastructure at the Vanderbilt University Medical Center (VUMC) to support physicians and patients in pursuing EA, called the Access to Investigational Medicines (AIM) Platform, aligning the needs and responsibilities of institutional stakeholders and streamlining to ensure efficiency and regulatory compliance. Since its launch, the AIM team has experienced steady growth, supporting 40 EA cases for drugs/biologics, including both single patient cases and intermediate-size EA protocols in the emergent and non-emergent setting. As the EA pathway is a complex process that requires expert facilitation, we propose prioritizing EA support infrastructure at major academic medical centers as an essential regulatory knowledge function

    The RIC Recruitment & Retention Materials Toolkit – a resource for developing community-informed study materials

    Get PDF
    Clinical trials face many challenges with meeting projected enrollment and retention goals. A study’s recruitment materials and messaging convey necessary key information and therefore serve as a critical first impression with potential participants. Yet study teams often lack the resources and skills needed to develop engaging, culturally tailored, and professional-looking recruitment materials. To address this gap, the Recruitment Innovation Center recently developed a Recruitment & Retention Materials Content and Design Toolkit, which offers research teams guidance, actionable tips, resources, and customizable templates for creating trial-specific study materials. This paper seeks to describe the creation and contents of this new toolkit

    Polymorphisms in Toll-like receptor genes influence antibody responses to cytomegalovirus glycoprotein B vaccine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Congenital Cytomegalovirus (CMV) infection is an important medical problem that has yet no current solution. A clinical trial of CMV glycoprotein B (gB) vaccine in young women showed promising efficacy. Improved understanding of the basis for prevention of CMV infection is essential for developing improved vaccines.</p> <p>Results</p> <p>We genotyped 142 women previously vaccinated with three doses of CMV gB for single nucleotide polymorphisms (SNPs) in TLR 1-4, 6, 7, 9, and 10, and their associated intracellular signaling genes. SNPs in the platelet-derived growth factor receptor (PDGFRA) and integrins were also selected based on their role in binding gB. Specific SNPs in TLR7 and IKBKE (inhibitor of nuclear factor kappa-B kinase subunit epsilon) were associated with antibody responses to gB vaccine. Homozygous carriers of the minor allele at four SNPs in TLR7 showed higher vaccination-induced antibody responses to gB compared to heterozygotes or homozygotes for the common allele. SNP rs1953090 in IKBKE was associated with changes in antibody level from second to third dose of vaccine; homozygotes for the minor allele exhibited lower antibody responses while homozygotes for the major allele showed increased responses over time.</p> <p>Conclusions</p> <p>These data contribute to our understanding of the immunogenetic mechanisms underlying variations in the immune response to CMV vaccine.</p

    Decentralized clinical trials in the trial innovation network: Value, strategies, and lessons learned

    Get PDF
    New technologies and disruptions related to Coronavirus disease-2019 have led to expansion of decentralized approaches to clinical trials. Remote tools and methods hold promise for increasing trial efficiency and reducing burdens and barriers by facilitating participation outside of traditional clinical settings and taking studies directly to participants. The Trial Innovation Network, established in 2016 by the National Center for Advancing Clinical and Translational Science to address critical roadblocks in clinical research and accelerate the translational research process, has consulted on over 400 research study proposals to date. Its recommendations for decentralized approaches have included eConsent, participant-informed study design, remote intervention, study task reminders, social media recruitment, and return of results for participants. Some clinical trial elements have worked well when decentralized, while others, including remote recruitment and patient monitoring, need further refinement and assessment to determine their value. Partially decentralized, or “hybrid” trials, offer a first step to optimizing remote methods. Decentralized processes demonstrate potential to improve urban-rural diversity, but their impact on inclusion of racially and ethnically marginalized populations requires further study. To optimize inclusive participation in decentralized clinical trials, efforts must be made to build trust among marginalized communities, and to ensure access to remote technology

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p&lt;0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p&lt;0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p&lt;0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP &gt;5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Impact of small‐for‐gestational age (SGA) status on gentamicin pharmacokinetics in neonates

    Full text link
    We compared gentamicin pharmacokinetics among neonates born small‐for‐gestational age (SGA) and appropriate for gestational age (AGA). We further compared gentamicin pharmacokinetics in subgroups of AGA and SGA neonates born preterm and term and treated within and after the initial week of age. Steady state peak and trough serum gentamicin concentrations were used to calculate clearance (Cl), elimination constant (Kel), volume of distribution (Vd), and half‐life (t 1/2 ) in infants (n = 236) who received ≥48 hours therapy. Statistical analyses (SPSS 17.0) included chi‐square and the non‐parametric Mann–Whitney U ‐test. SGA infants treated early (≤7days) (n = 29) and at postmenstrual ages ≤32 weeks (n = 23) had significantly lower median Kel (0.069/h vs. 0.081/h and 0.067/h vs. 0.075/h) and clearance (0.58 mL/kg/min vs. 0.68 mL/kg/min and 0.46 mL/kg/min vs. 0.65 mL/kg/min), compared to those born AGA. There were no significant differences in pharmacokinetic profiles with later therapy or at more mature ages. The prolonged half‐life of gentamicin may need to be considered in dosing regimens for preterm SGA infants in the initial week of life.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102188/1/jcph190.pd
    corecore